IJCNN 2021 # Towards Unbiased Random Features with Lower Variance For Stationary Indefinite Kernels Qin Luo, Kun Fang, Jie Yang, Xiaolin Huang Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University - Background - Motivation - Methods - Experiments - Conclusion - Background - Motivation - Methods - Experiments - Conclusion # **Background** - Kernel methods are extensively used in classification [1], regression [2] and dimension reduction [3]. - Kernel methods scale poorly to large datasets because of $O(N^3)$ time complexity and $O(N^2)$ space complexity - Random Fourier Features reduce the computation cost and storage space to $\mathcal{O}(Ns^2)$ and $\mathcal{O}(Ns)$ ($s \ll N$) [1] Schölkopf B, Smola A J, Bach F. Learning with kernels: support vector machines, regularization, optimization, and beyond[M]. MIT press, 2002. [2] Wilson A, Adams R. Gaussian process kernels for pattern discovery and extrapolation[C]//International conference on machine learning. PMLR, 2013: 1067-1075. [3] Schölkopf B, Smola A, Müller K R. Kernel principal component analysis[C]//International conference on artificial neural networks. Springer, Berlin, Heidelberg, 1997: 583-588. # **Background** - Random Fourier Features are restricted to the kernels: - 1) shift-invariant (stationary) $$k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y})$$ 2) positive definite (PD) $$\alpha^T K \alpha \geq 0$$ for all $\alpha \neq 0$ and $K_{ij} = k(x_i, x_j)$ - Not satisfy the requirement - 1) **non-stationary kernels**: polynomial kernel, neural tangent kernel (NTK) When data is restricted on the sphere \rightarrow stationary but indefinite kernel - 2) non-PD kernel: linear combination of Gaussian kernel (Delta-Gaussian kernel), TL1-kernel (Bohner's Theorem) A continuous and **stationary** function $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is **positive definite** if and only if it can be represented as $$k(\mathbf{x} - \mathbf{y}) = \int_{\mathbb{R}^d} \exp(i\mathbf{w}^T(\mathbf{x} - \mathbf{y})) p(d\mathbf{w}) = \mathbb{E}_{\mathbf{w} \sim p(\mathbf{w})} [\exp(i\mathbf{w}^T(\mathbf{x} - \mathbf{y}))]$$ where $p(\mathbf{w})$ is the positive finite measure over \mathbf{w} , i is imaginary unit. # **Background** #### **Related Work** | Methods | Kernel Types | Unbiasedness | Variance | |--|-----------------------|--------------|--| | Random Maclaurin (RM) [1] | Polynomial | V | $\mathcal{O}\left(\left(\frac{32RL}{\epsilon}\right)^{2d}\exp\left(-\frac{D\epsilon^2}{8C_{\Omega}^2}\right)\right)$ | | Tensor Sketch (TS) [2] | Polynomial | ٧ | $\mathcal{O}(\exp\left(-\frac{t\epsilon^2}{2R^{4p}}\right))$ | | Spherical Random Features (SRF) [3] | Stationary Indefinite | × | | | Double Variation Random Features (DIGMM) [4] | Stationary Indefinite | × | | | Generalized Random Fourier Features (GRFF) [5] | Stationary Indefinite | V | $\mathcal{O}\left(\left(\frac{2\sigma R}{\epsilon}\right)^{2d} \exp\left(-\frac{s\epsilon^2}{32(d+2)}\right)\right)$ | ^[1] Kar P, Karnick H. Random feature maps for dot product kernels[C]//Artificial intelligence and statistics. PMLR, 2012: 583-591. - [3] Pennington J, Felix X Y, Kumar S. Spherical Random Features for Polynomial Kernels[C]//NIPS. 2015. - [4] Liu F, Huang X, Shi L, et al. A double-variational bayesian framework in random fourier features for indefinite kernels[J]. IEEE transactions on neural networks and learning systems, 2019, 31(8): 2965-2979. - [5] Liu F, Huang X, Chen Y, et al. Fast Learning in Reproducing Kernel Krein Spaces via Signed Measures[C]//International Conference on Artificial Intelligence and Statistics. PMLR, 2021: 388-396. ^[2] Pham N, Pagh R. Fast and scalable polynomial kernels via explicit feature maps[C]//Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 2013: 239-247. - Background - Motivation - Methods - Experiments - Conclusion ## **Motivation** **Objective**: Unbiased random Fourier approximation with lower variance for stationary indefinite kernels #### **Contribution:** - Unbiased approximation and lower the variance utilizing orthogonal sampling - Theoretical analysis of the unbiasedness and variance reduction - Experimental validation of the approximation error and classification or regression performance compared with the existing approximation method - Background - Motivation - Methods - Experiments - Conclusion #### **Preliminaries** (Signed Measure) Let Ω be some set, and \mathcal{A} be a σ -algebra of subsets on Ω . A signed measure is a function $\mu: \mathcal{A} \to [-\infty, +\infty)$ or $(-\infty, +\infty]$ satisfying σ -additivity. (Jordan Decomposition) Let μ be a signed measure defined on the σ -algebra \mathcal{A} . There exists two nonnegative measures μ_+ and μ_- (one of the measure) such that $\mu = \mu_+ - \mu_-$. The total mass is defined as: $||\mu|| = ||\mu_+|| + ||\mu_-||$ p(w) is not a probability measure, viewed as a signed measure. $$k(\boldsymbol{x} - \boldsymbol{y}) = k(\boldsymbol{z}) = \int_{\mathbb{R}^d} \exp(i\boldsymbol{w}^T\boldsymbol{z}) \, p(d\boldsymbol{w}) = \int_{\mathbb{R}^d} \exp(i\boldsymbol{w}^T\boldsymbol{z}) \, p_+(d\boldsymbol{w}) - \int_{\mathbb{R}^d} \exp(i\boldsymbol{w}^T\boldsymbol{z}) \, p_-(d\boldsymbol{w})$$ $$= \left| |p_+| \left| \mathbb{E}_{\boldsymbol{w} \sim \widetilde{p_+}}(\boldsymbol{w}) \left(\exp(i\boldsymbol{w}^T\boldsymbol{z}) \right) - \left| |p_-| \right| \mathbb{E}_{\boldsymbol{w} \sim \widetilde{p_-}}(\boldsymbol{w}) \left(\exp(i\boldsymbol{w}^T\boldsymbol{z}) \right) \right|$$ where $\widetilde{p_+} = \frac{p_+(\boldsymbol{w})}{||p_+||}$ and $\widetilde{p_-} = \frac{p_-(\boldsymbol{w})}{||p_-||}$ Define $$\phi(x) = \frac{1}{\sqrt{s}} [\psi_1(x), \psi_2(x), \psi_3(x), ..., \psi_s(x)]^T$$ with $\psi_i(x)$: $\psi_i(\mathbf{x}) = \left[\sqrt{||p_+||} \cos(\mathbf{w}_i^T \mathbf{x}), \sqrt{||p_+||} \sin(\mathbf{w}_i^T \mathbf{x}), i \sqrt{||p_-||} \cos(\mathbf{v}_i^T \mathbf{x}), i \sqrt{||p_-||} \sin(\mathbf{v}_i^T \mathbf{x}) \right]^T - \mathbf{v}_i(\mathbf{x}) = \left[\sqrt{||p_+||} \cos(\mathbf{w}_i^T \mathbf{x}), \sqrt{||p_+||} \sin(\mathbf{w}_i^T \mathbf{x}), i \sqrt{||p_-||} \cos(\mathbf{v}_i^T \mathbf{x}), i \sqrt{||p_-||} \sin(\mathbf{v}_i^T \cos(\mathbf{v}_i^T \mathbf{x})$ $$k(\mathbf{x} - \mathbf{y}) \approx \frac{1}{S} \sum_{i=1}^{S} \langle \psi_i(\mathbf{x}), \psi_i(\mathbf{y}) \rangle = \phi(\mathbf{x})^T \phi(\mathbf{y})$$ Generalized Random Fourier Features #### **Unbiased Approximation** $$\mathbb{E}\big(K_{GRFF}(\mathbf{z})\big) = k(\mathbf{z})$$ Variance determines the whole approximation error. Orthogonal sampling could reduce the variance. #### **QR** decomposition 1) Amplitude sampling $$||\boldsymbol{w}_i||_2 \sim \widetilde{p_+(\boldsymbol{w})}$$ $||\boldsymbol{v}_i||_2 \sim \widetilde{p_-(\boldsymbol{w})}$ 2) Orthogonal direction $$a_j \sim \mathcal{N}(\mathbf{0}, I_{2m})$$ $b_j \sim \mathcal{N}(\mathbf{0}, I_{2m})$ $M = [a_1, ..., a_m, b_1, ..., b_m]$ $M^{orth} = QR(M)$ 3) Composition $$\mathbf{w}_i = ||\mathbf{w}_i||_2 M_i^{orthn} \quad \mathbf{v}_i = ||\mathbf{v}_i||_2 M_{s+i}^{orthn}$$ #### **Variance Reduction** Theorem 5 [1] For a PD radial kernel k on \mathbb{R}^d with Fourier measure p(w) and $x, y \in \mathbb{R}^d$, writing z = x - y, we have: $$G_{k}(\mathbf{z}) = Var\left(K_{ORF}(\mathbf{z})\right) - Var\left(K_{RFF}(\mathbf{z})\right) = \frac{s-1}{s} \mathbb{E}_{R_{1}} \left[\frac{J_{\frac{d}{2}-1}\left(R_{1}||\mathbf{z}||\right)\Gamma\left(\frac{d}{2}\right)}{\left(\frac{R_{1}||\mathbf{z}||}{2}\right)^{\frac{d}{2}-1}} \right]^{2} - \frac{s-1}{s} \mathbb{E}_{R_{1},R_{2}} \left[\frac{J_{\frac{d}{2}-1}\left(\sqrt{R_{1}^{2}+R_{2}^{2}}||\mathbf{z}||\right)\Gamma\left(\frac{d}{2}\right)}{\left(\frac{\sqrt{R_{1}^{2}+R_{2}^{2}}||\mathbf{z}||}{2}\right)^{\frac{d}{2}-1}} \right]^{2}$$ where R_1 , $R_2 \sim p(\mathbf{w})$, and J_{α} is the Bessel function of the first kind of degree α . $$H(\mathbf{z}) = 2||p_+||||p_-||[\mathbb{E}(a_1)\mathbb{E}(b_1) - \mathbb{E}(a_1b_1)], \qquad a_1 = \cos(\mathbf{w}_1^T\mathbf{z}), \qquad b_1 = \cos(\mathbf{v}_1^T\mathbf{z})$$ [1] Choromanski K, Rowland M, Sarlos T, et al. The geometry of random features[C]//International Conference on Artificial Intelligence and Statistics. PMLR, 2018: 1-9. #### **Variance Reduction** (a) polynomial kernel on the unit sphere (a=3,m=1) (b) delta-gaussian kernel ($a_1=1, a_2=-1, \sigma_1=1, \sigma_2=10$) - Background - Motivation - Methods - Experiments - Conclusion # **Experiments** #### Setup Kernels Polynomial kernel $$k(x, y) = \alpha(q + \langle x, y \rangle)^m = \left(1 - \frac{||x - y||^2}{a^2}\right)^m$$ where $q = a^2/2 - 1$, $\alpha = (2/\alpha^2)^m$ Delta-Gaussian kernel $$k(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{m} \alpha_i e^{-\frac{||\mathbf{x} - \mathbf{y}||^2}{2\sigma_i^2}}$$ 2) Datasets | Datasets | d | training | testing | |----------|-----|----------|---------| | letter | 16 | 12000 | 6000 | | ijcnn1 | 22 | 49990 | 91701 | | usps | 256 | 7291 | 2007 | housing: d=13, training=405, testing=101 ## **Experiments** #### **Approximation error** TABLE II COMPARISON RESULTS BETWEEN APPLYING ORTHOGONAL SAMPLING AND I.I.D SAMPLING ON STATIONARY INDEFINITE KERNELS IN TERMS OF APPROXIMATION ERROR (MEAN±STD.). THE LOWEST ERROR IS HIGHLIGHTED IN BOLDFACE | Kernel | DataSet | Method | s=1/2d | s=d | s=2d | s=8d | |-------------------|---------|--------|---------------------|---------------------|---------------------|---------------------| | | letter | GRFF | 0.0859 ± 0.0309 | 0.0547 ± 0.0078 | 0.0469 ± 0.0109 | 0.0261 ± 0.0059 | | | | GORF | 0.0716 ± 0.0175 | 0.0495 ± 0.0139 | 0.0360 ± 0.0110 | 0.0231 ± 0.0078 | | nalunamial | 221 | GRFF | 0.1159 ± 0.0158 | 0.0907 ± 0.0194 | 0.0794 ± 0.0142 | 0.0433 ± 0.0059 | | polynomial | ijcnn1 | GORF | 0.1072 ± 0.0228 | 0.0775 ± 0.0204 | 0.0487 ± 0.0155 | 0.0397 ± 0.0135 | | | usps | GRFF | 0.0270 ± 0.0056 | 0.0213 ± 0.0063 | 0.0160 ± 0.0029 | 0.0137 ± 0.0020 | | | | GORF | 0.0251 ± 0.0078 | 0.0194 ± 0.0087 | 0.0143 ± 0.0030 | 0.0137 ± 0.0016 | | | letter | GRFF | 0.3918 ± 0.0428 | 0.2736 ± 0.0345 | 0.1887 ± 0.0201 | 0.1017 ± 0.0088 | | delta-gaussian ij | tetter | GORF | 0.3154 ± 0.0424 | 0.1133 ± 0.0181 | 0.0760 ± 0.0090 | 0.0376 ± 0.0039 | | | ijcnn1 | GRFF | 0.2924 ± 0.0188 | 0.2171 ± 0.0222 | 0.1504 ± 0.0134 | 0.0757 ± 0.0081 | | | | GORF | 0.2415 ± 0.0190 | 0.1026 ± 0.0129 | 0.0739 ± 0.0065 | 0.0383 ± 0.0022 | | | usps | GRFF | 0.1005 ± 0.0061 | 0.0690 ± 0.0050 | 0.0500 ± 0.0024 | 0.0253 ± 0.0023 | | | | GORF | 0.0724 ± 0.0049 | 0.0235 ± 0.0009 | 0.0166 ± 0.0008 | 0.0083 ± 0.0003 | Fig. 2. Comparisons of various algorithms for kernel approximation in terms of approximation error across two typical stationary indefinite kernels and three datasets with different dimensions. Top: polynomial kernel on the unit sphere. Below: delta-gaussian kernel Unbiased estimation + Lower variance = Lower approximation error # **Experiments** #### **SVM classification problem** Fig. 3. Comparisons of various algorithms for SVM classification task in terms of accuracy across two typical stationary indefinite kernels and three datasets with different dimensions. Top: polynomial kernel on the unit sphere. Below: delta-gaussian kernel #### **SVR regression problem** TABLE III REGRESSION ERROR FOR KERNEL APPROXIMATION METHODS ON POLYNOMIAL KERNEL AND HOUSING DATASET (RMSE: MEAN±STD). THE LOWEST ERROR IS HIGHLIGHTED IN BOLDFACE | Methods | s=2d | s=4d | s=8d | |------------|-------------------|-------------------|-----------------| | RM | 7.153 ± 1.772 | 5.436 ± 0.917 | 4.491 ± 0.008 | | TS | 5.414 ± 0.879 | 4.772 ± 0.177 | 4.657 ± 0.316 | | SRF | 4.391 ± 0.368 | 3.906 ± 0.219 | 3.555 ± 0.130 | | DIGMM | 4.897 ± 0.368 | 4.130 ± 0.324 | 4.000 ± 0.475 | | GORF(OURS) | 4.079 ± 0.233 | 3.817 ± 0.204 | 3.472 ± 0.137 | TABLE IV REGRESSION ERROR FOR KERNEL APPROXIMATION METHODS ON DELTA-GAUSSIAN KERNEL AND HOUSING DATASET (RMSE: MEAN±STD). THE LOWEST ERROR IS HIGHLIGHTED IN BOLDFACE | Methods | s=2d | s=4d | s=8d | |------------|-----------------|-----------------|-----------------| | SRF | 5.432 ± 0.729 | 3.845 ± 0.379 | 3.321 ± 0.274 | | GORF(OURS) | 3.739 ± 0.360 | 3.474 ± 0.330 | 3.164 ± 0.452 | - Background - Motivation - Methods - Experiments - Conclusion ### Conclusion - 1) Propose an unbiased random feature approximation with lower variance for stationary indefinite kernels - 2) Verify the unbiasedness and numerically calculate the reduced variance. - 3) Experimentally demonstrate the approximation error and performance in classification and regression task compared with other methods.