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Background

 Kernel methods are extensively used in classification [1], regression [2] and dimension 
reduction [3].

 Kernel methods scale poorly to large datasets because of 𝒪 𝑁3 time complexity and 
𝒪(𝑁2) space complexity

 Random Fourier Features reduce the computation cost and storage space to 𝒪 𝑁𝑠2

and 𝒪 𝑁𝑠 (𝑠 ≪ 𝑁)

[1] Schölkopf B, Smola A J, Bach F. Learning with kernels: support vector machines, regularization, optimization, and beyond[M]. MIT press, 2002.

[2] Wilson A, Adams R. Gaussian process kernels for pattern discovery and extrapolation[C]//International conference on machine learning. PMLR, 

2013: 1067-1075.

[3] Schölkopf B, Smola A, Müller K R. Kernel principal component analysis[C]//International conference on artificial neural networks. Springer, Berlin, 

Heidelberg, 1997: 583-588.



Background
 Random Fourier Features are restricted to the kernels:

1) shift-invariant (stationary)
𝑘 𝒙, 𝒚 = 𝑘 𝒙 − 𝒚

2) positive definite (PD)
𝜶𝑇𝑲𝜶 ≥ 0 for all 𝜶 ≠ 𝟎 and 𝐾𝑖𝑗 = 𝑘 𝒙𝑖 , 𝒙𝑗

 Not satisfy the requirement
1) non-stationary kernels: polynomial kernel, neural tangent kernel (NTK)

When data is restricted on the sphere → stationary but  indefinite kernel
2) non-PD kernel: linear combination of Gaussian kernel (Delta-Gaussian kernel), TL1-kernel

(Bohner’s Theorem) A continuous and stationary function 𝑘: ℝ𝑑 × ℝ𝑑 → ℝ is positive definite if and only if it can be

represented  as

𝑘 𝒙 − 𝒚 =  
ℝ𝑑
exp 𝑖𝒘𝑇 𝒙 − 𝒚 𝑝 𝑑𝒘 = 𝔼𝒘∼𝑝 𝒘 [exp i𝒘

𝑻 𝒙 − 𝒚 ]

where p(w) is the positive finite measure over w, i is imaginary unit.



Background

Methods Kernel Types Unbiasedness Variance

Random Maclaurin (RM) [1] Polynomial √ 𝒪(
32𝑅𝐿

𝜖

2𝑑

exp −
𝐷𝜖2

8𝐶Ω
2 )

Tensor Sketch (TS) [2] Polynomial √
𝒪(exp −

𝑡𝜖2

2𝑅4𝑝
)

Spherical Random Features (SRF) [3] Stationary Indefinite × ________________

Double Variation Random Features (DIGMM) [4] Stationary Indefinite × ________________

Generalized Random Fourier Features (GRFF) [5] Stationary Indefinite √ 𝒪(
2𝜎𝑅

𝜖

2𝑑

exp −
𝑠𝜖2

32(𝑑 + 2)
)
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Motivation

Objective: Unbiased random Fourier approximation with lower variance for stationary 
indefinite kernels

Contribution:
 Unbiased approximation and lower the variance utilizing orthogonal sampling
 Theoretical analysis of the unbiasedness and variance reduction
 Experimental validation of the approximation error and classification or regression 
performance compared with the existing approximation method
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Methods

Preliminaries

(Signed Measure) Let Ω be some set, and 𝒜 be a 𝜎-algebra of subsets on Ω. A signed measure is a function 

𝜇:𝒜 → [−∞,+∞) or (−∞,+∞] satisfying 𝜎-additivity.

(Jordan Decomposition) Let 𝜇 be a signed measure defined on the 𝜎-algebra 𝒜. There exists two nonnegative

measures 𝜇+ and 𝜇− (one of the measure) such that 𝜇 = 𝜇+ − 𝜇−. The total mass is defined as: 𝜇 = 𝜇+
+| 𝜇− |



Methods

𝑝(𝒘) is not a probability measure, viewed as a signed measure.

𝑘 𝒙 − 𝒚 = 𝑘 𝒛 =  
ℝ𝑑
exp 𝑖𝒘𝑇𝒛 𝑝(𝑑𝒘) =  

ℝ𝑑

exp 𝑖𝒘𝑇𝒛 𝑝+(𝑑𝒘) −  

ℝ𝑑

exp 𝑖𝒘𝑇𝒛 𝑝− 𝑑𝒘

= 𝑝+ 𝔼𝒘∼ 𝑝+ 𝒘 exp i𝐰
T𝐳 − 𝑝− 𝔼𝒘∼ 𝑝− 𝒘 exp i𝐰

T𝐳

where  𝑝+ =
𝑝+ 𝒘

𝑝+
and  𝑝− =

𝑝− 𝒘

𝑝−

Define 𝜙 𝒙 =
1

𝑠
𝜓1 𝒙 ,𝜓2 𝒙 ,𝜓3 𝒙 ,… . , 𝜓𝑠 𝒙

𝑇 with 𝜓𝑖(𝒙):

𝜓𝑖 𝒙 = 𝑝+ cos 𝒘𝑖
𝑇𝒙 , 𝑝+ sin 𝒘𝑖

𝑻𝒙 , i 𝑝− cos 𝝊𝑖
𝑇𝒙 , i 𝑝− sin 𝝊𝑖

𝑻𝒙

𝑇

𝑘 𝒙 − 𝒚 ≈
1

𝑠
 

𝑖=1

𝑠

< 𝜓𝑖 𝒙 ,𝜓𝑖 𝒚 > = 𝜙 𝒙
𝑇𝜙(𝒚)

Generalized Random 
Fourier Features



Methods

Unbiased Approximation 

𝔼 𝐾𝐺𝑅𝐹𝐹 𝒛 = 𝑘(𝒛)

Variance determines the whole approximation error. Orthogonal sampling could reduce the
variance. 

QR decomposition

𝒘𝑖 2 ∼
 𝑝+(𝒘)1) Amplitude sampling 𝝊𝑖 2 ∼

 𝑝−(𝒘)

2) Orthogonal direction 𝒂𝑗 ∼ 𝒩(𝟎, 𝑰2𝑚) 𝒃𝒋 ∼ 𝓝(𝟎, 𝑰𝟐𝒎) 𝑴 = [𝒂𝟏, … , 𝒂𝒎, 𝒃𝟏, … , 𝒃𝒎]

𝑀𝑜𝑟𝑡ℎ = 𝑄𝑅(𝑀)

3) Composition 𝒘𝑖 = 𝒘𝑖 2𝑀𝑖
𝑜𝑟𝑡ℎ𝑛 𝝊𝑖 = 𝝊𝑖 2𝑀𝑠+𝑖

𝑜𝑟𝑡ℎ𝑛



Methods

Variance Reduction

𝑉𝑎𝑟 𝐾𝐺𝑂𝑅𝐹 𝒛 − 𝑉𝑎𝑟 𝐾𝐺𝑅𝐹𝐹 𝒛 = 𝑝+
2
𝐺 𝑘+ 𝒛 + 𝑝−

2
𝐺 𝑘− 𝒛 + 𝐻(𝒛)

Orthogonality on 𝑊𝑝𝑜𝑠

Orthogonality on 𝑊𝑛𝑒𝑔

Mutual orthogonality 
on 𝑊𝑝𝑜𝑠 and 𝑊𝑛𝑒𝑔

Theorem 5 [1]  For a PD radial kernel 𝑘 on ℝ𝑑 with Fourier measure 𝑝(𝒘) and 𝒙, 𝒚 ∈ ℝ𝑑, writing 𝒛 = 𝒙 − 𝒚, we have:

𝐺𝑘 𝒛 = 𝑉𝑎𝑟 𝐾𝑂𝑅𝐹 𝒛 − 𝑉𝑎𝑟 𝐾𝑅𝐹𝐹 𝒛 =
𝑠 − 1

𝑠
𝔼𝑅1

𝐽𝑑
2
−1
𝑅1 𝒛 Γ

𝑑
2

𝑅1 𝒛
2

𝑑
2
−1

2

−
𝑠 − 1

𝑠
𝔼𝑅1,𝑅2

𝐽𝑑
2
−1
𝑅1
2 + 𝑅2
2 𝒛 Γ

𝑑
2

𝑅1
2 + 𝑅2
2 𝒛
2

𝑑
2
−1

2

where 𝑅1, 𝑅2 ∼ 𝑝(𝒘), and 𝐽𝛼 is the Bessel function of the first kind of degree 𝛼.

𝐻 𝒛 = 2 𝑝+ 𝑝− 𝔼 𝑎1 𝔼 𝑏1 − 𝔼 𝑎1𝑏1 , 𝑎1 = cos 𝒘1
𝑇𝒛 , 𝑏1 = cos(𝝊1

𝑇𝒛)

[1] Choromanski K, Rowland M, Sarlos T, et al. The geometry of random features[C]//International Conference on Artificial Intelligence and Statistics. 

PMLR, 2018: 1-9. 
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Experiments

Setup

1) Kernels
Polynomial kernel

𝑘 𝒙, 𝒚 = 𝛼 𝑞 +< 𝒙, 𝒚 > 𝑚 = 1 −
𝒙 − 𝒚

𝟐

𝑎2

𝑚

where 𝑞 = 𝑎2/2 − 1, 𝛼 = 2/𝛼2 𝑚

Delta-Gaussian kernel

𝑘 𝒙, 𝒚 = 

𝑖=1

𝑚

𝛼𝑖𝑒
−
𝒙−𝒚
2

2𝜎𝑖
2

2) Datasets

housing: d=13, training=405, testing=101



Experiments

Approximation error

Unbiased estimation + Lower variance = Lower approximation error



Experiments

SVM classification problem SVR regression problem
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Conclusion

1) Propose an unbiased random feature approximation with lower variance for stationary
indefinite kernels

2) Verify the unbiasedness and numerically calculate the reduced variance.

3) Experimentally demonstrate the approximation error and performance in classification
and regression task compared with other methods.


