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Abstract—Reinforcement learning (RL)-based macro place-
ment has garnered significant interest in both the fields of
artificial intelligence and electronic design automation (EDA), due
to its excellent potential for achieving better performance, power
and area optimization compared to analytical methods. However,
existing techniques are restricted in the ASIC and ignore the
other hardware architectures like FPGA. Neglecting the intrinsic
characters of FPGA structures, conventional RL-based methods
for ASICs may result in a large exploration space and low
sample efficiency. In this work, we propose TRPlaceFPGA-MP, a
two-stage RL-based macro placement framework for Ultrascale
FPGAs. Leveraging the columnar architecture, we first train a
tiny RL model to determine the candidate columns for each
macro in the first stage. With the pruned searching space, a
more sophisticated RL model is then trained in the second stage
to determine the ultimate positions of the macros. Experimental
results on the MLCAD2023 contest benchmark demonstrate
that TRPlaceFPGA-MP still maintains superior placement per-
formance compared with Vivado and DreamplaceFPGA-MP.
Furthermore, it improves the convergence rate by 2.28x and
accelerates the exploration process by 1.61x compared to the
one-stage RL approach.

I. INTRODUCTION

Modern circuit designs heavily rely on macros, which
are pre-defined and pre-verified functional blocks aimed at
reducing design complexity [1]–[3]. In the design flow of
field-programmable gate arrays (FPGAs), macro placement
refers to determining the sites of the memory blocks and
digital signal processors [4], [5]. The placement of macros
plays a crucial role in overall routability and timing. In recent
years, reinforcement learning (RL)-based macro placement
has emerged as a popular research topic. Notably, research
conducted by the Google Brain Team [6] has revealed that RL-
based macro placement methods can achieve comparable or
even superior performance when compared to human-designed
layouts. RL-based methods offer distinct advantages over
analytical approaches [7]–[9] in handling non-differentiable
objectives such as Half-Perimeter Wirelength (HPWL), cell
density, and timing violations without the need for approxima-
tions. Recent research works have further advanced RL-based
macro placement techniques by integrating the DreamPlace
[8] as a standard cells placer [10]–[12], employing dense
rewards [13], [14], exploring the offline RL scheme [15], or
considering the cell-shifting approach [16].

Existing research on RL-based macro placement has primar-
ily focused on application-specific integrated circuits (ASICs),
while limited attention is given to another equally impor-

tant architecture: FPGAs. FPGA macro placement introduces
additional challenges due to their heterogeneity and limited
resources for the place and route process. While there have
been works such as [17], [18] that explore the use of RL
methods as auxiliary techniques to search for the best directed
moves in simulated annealing-based FPGA placers, these
approaches heavily rely on heuristics and lack flexibility with
the predefined directed moves.

In addition, existing RL-based macro placers suffer from
the limitation of requiring a large number of iterations and
significant time to achieve convergence in exploring better
placement solutions. Even for the Chipformer [15] that is
based on the offline RL methods, additional refinement based
on the time-consuming online RL is still required to improve
the placement results. Research conducted by Andrew B.
Kahng’s group [19] demonstrates that online RL-based macro
placement can take more than 10 hours to obtain a policy
network with satisfactory performance. Moreover, certain RL-
based macro placers place a subset of macros based on the
guidance from the initial placement generated by the analytical
placer or the commercial tool [13], [20], [21], with the number
of a few hundred. However, in FPGA macro placement, the
number of macros to be placed can reach more than thousands,
posing additional challenges in achieving fast convergence and
reducing exploration time. The slow convergence rate and the
long exploration time can be attributed to the large search
space in the exploration. Therefore, proper pruning of the
search space is highly significant in RL-based FPGA macro
placement.

In our paper, we introduce TRPlaceFPGA-MP, a two-
stage RL-based macro placer specifically designed for FPGA
architectures. We emphasize two key features that address the
unique characteristics of FPGAs:

• New architecture: our RL-based macro placer is specif-
ically designed to leverage the columnar architecture and
heterogeneity of FPGA boards.

• Fast convergence: a two-stage decomposition approach
is proposed to address the challenge of slow convergence
and long exploration time. In the first stage, candidate
columns are determined for each macro. In the second
stage, the placement location is determined within the
search space restricted by these candidate columns. By
exploring a significantly smaller search space at these
two stages, our RL agent achieves faster convergence and
reduces exploration time.



To demonstrate the effectiveness of our method, we compare
the macro placement performance like wirelength, with the
commercial tool Vivado and the leading academic FPGA
macro placer DreamplaceFPGA-MP, using the MLCAD2023
contest benchmark. We also conduct experiments comparing
the convergence speed and exploration time with MaskPlacef ,
a one-stage approach that adapts MaskPlace [13] specifically
for FPGAs.

II. PRELIMINARY

A. FPGA Architecture

Our macro placer targets at the Xilinx Ultrascale series
FPGAs [22]. These FPGAs are characterized by a column-wise
structure, as depicted in Figure 1. The architecture of these
FPGAs incorporates five common site types that allow for
flexible configuration: configurable logic block (CLB), digital
signal processor (DSP), block RAM (BRAM), input/output
buffer (IO), and switchbox. Each CLB can accommodate
multiple look-up tables (LUTs) and flip flops (FFs). Within the
same column, all sites have the same types. The switchboxes
serve the purpose of interconnecting different sites using
prefabricated wires.

During the macro placement, the BRAMs and DSPs are
considered as the macros. These macros exhibit heterogeneous
sizes, ranging from single macros to cascaded macros that
comprise multiple BRAMs and DSPs [23], [24].

B. Problem Formulation

When applying online RL technique to FPGA macro place-
ment, several fundamental elements can be defined:
• State st - the state encodes both the partial FPGA macro

placement solution, the features of the macro to be placed
and the global information of the netlist. It can be rep-
resented as a gridmap that reflects the columns placing
macros and IOs on the FPGA board. For example, the Xilinx
Ultrascale+ xcvu30 FPGA board consists of 33 columns
placing macros as well as IOs, with a height of 300.
Each BRAM and DSP site occupies 5 grids and 2.5 grids
respectively. Then the size of the gridmap is 33x300. For
cascaded macros with n units, the occupation of grids in the
grid map is the accumulation of the size of each unit within
the cascaded macro.

• Action at - the action can be represented as a probability
map, corresponding to the grid map representing the avail-
able sites on the FPGA board.

• State transition T (st+1|st, at) - it is defined by the proba-
bility distribution over the next state st+1 given the current
state st and action at.

• Rewards Rt - it can be defined as the negative increment of
the Half-Perimeter Wirelength (HPWL) for the macros and
fixed IOs, which we’ll refer to as MacroHPWL:

MacroHPWL =
∑
n∈N

[( max
i∈S(n)

xi − min
i∈S(n)

xi)+

( max
i∈S(n)

yi − min
i∈S(n)

yi)]
(1)
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Fig. 1: The layout of the Xilinx Ultrascale board.

where N denotes the set of all the nets, and S(n) represents
the set of the IO ports and the macros that are connected to
the net n and have already been placed. The reward Rt can
be densely calculated to provide immediate feedback after
each macro is placed.
In our RL-based FPGA macro placement problem, the

objective is to train a policy network that sequentially places
the macros on the gridmap while considering the following
factors:

a) Producing the valid macro placement solution. The valid
placement solution means ensuring that each macro should be
placed on the corresponding site.

b) Maximizing the reward (which also minimizes the
MacroHPWL)

III. METHODOLOGY

The overall framework of TRPlaceFPGA-MP is depicted in
Figure 2. In this framework, macros are placed sequentially
onto valid positions on the FPGA board, and it consists
of two distinct stages. The first stage involves predicting
candidate columns, while the second stage determines the
precise position within the chosen columns.

To achieve this, both stages utilize the actor-critic frame-
work, incorporating policy and value networks. Initially, three
masks are computed to represent the column information or
the space information of the partial placement. Meanwhile, the
embeddings are extracted from the netlist through a pretrained
Variational Graph AutoEncoder (VGAE) [25] to serve as the
global structural information. Furthermore, the features of
the macros to be placed are concatenated with these masks
and the netlist embeddings, forming the input for the policy
network. The policy network analyzes this concatenated input
and generates a probability map that indicates the likelihood
of placing the macro in each column or at specific grid
locations on the FPGA board. The candidate columns or
placement locations are sampled from this action probability
map. Additionally, the concatenated features are also utilized
as input for the value network. The value network plays a
role in enhancing the training process of the RL algorithm by
providing supplementary guidance.

A. Motivation

The primary challenge faced by online RL-based macro
placers is the time overhead associated with the exploration,
particularly when dealing with a larger number of macros and
expansive search space. Suppose the number of the macros is



UltraScale+ FPGA board

Construct

the grid map

grid map

(33x300)

Macro to be placed 

(DSP, 2x1)

Position Mask

(33x300)

Macro Ids/Size

Policy Network

Action Probability 

Map 

（33x300)

Value Network Value

View Mask

(33x300)

Wire Mask

(33x300)

Stage 2   Site Determination

Stage 1   Column Determination

Column Prediction

Model
Action Probability Array

(33x1)

Column Array

(33x1)

netlist

Netlist 

Embeddings

Fig. 2: The overall framework for TRPlaceFPGA-MP.

N , the number of the grids occupied by the macro i is ai and
the total number of sites is aT . The size of the search space,
denoted as cs can be calculated as follows:

cs =

N∏
i=1

aT −
i∑

j=1

ai

 ≈ (aT )
N (2)

Previous research in RL-based ASIC macro placement
typically involves an initial placement using an analytical
placer, followed by the selection of a subset of macros (often
with N < 1000) for further refinement using online RL.
However, in the case of FPGA designs, the number of macros
is significantly higher. For example, in the MLCAD2023
contest benchmark [4], there are approximately two thousand
macros. Furthermore, the macros to be placed in later stages of
FPGA designs exhibit more flexibility and options due to their
smaller size compared to the macros in ASIC. The increased
number of macros and the larger search space in FPGA designs
result in the need for more extensive exploration and slower
convergence rates for RL-based macro placement. The slower
convergence rate contributes to increased time expenses on the
online training.

To enhance the practicality and reduce online exploration
time in RL-based macro placement, the TRPlaceFPGA-MP
introduces a two-stage decomposition approach and leverages
the column structure of the FPGA board. In the first stage to
determine the candidate columns, the size of the search space
cs1 is calculated as:

cs1 = (n col)N (3)

where n col is the number of columns in the gridmap. In
the second stage to determine the specific sites within the
candidate columns, the size of the search space cs2 is:

cs2 = (k ∗ aT
n col

)N (4)

where k is the number of the candidate columns selected for
each macro. The first policy model explores n col columns to
identify the candidates, thereby helping to narrow down the

search space and reduce the exploration required in subsequent
stages. We divide the search space of the two-stage RL-based
macro placer with that of the one-stage macro placer:

cs1 + cs2
cs

≈ (
n col

aT
)N + (

k

n col
)N (5)

Under the circumstances that the size of the gridmap is
33x300 and top 5 columns are selected as candidates, the ratio
is approximately calculated as:

(
n col

aT
)N + (

k

n col
)N ≈ (

1

300
)N + (

5

33
)N < 1 (6)

which verifies the reduction of the search space when adopting
the two-stage RL-based macro placer.

B. Stage 1: Column Determination

1) Feature Construction: To determine the suitable
columns for macro placement, the problem is modeled as a
bin packing problem with the objective of minimizing the
increase in MacroHPWL while ensuring sufficient available
sites to accommodate the macros. Let {ni

sites}n col
i=1 represent

the number of sites in each column, and {ni
occ}n col

i=1 denote
the number of occupied sites in each column. The condition
for placing the macro with m BRAMs/DSPs in a column is
as follows:

ni
occ +m ≤ αni

sites (7)

where α is the coefficient that controls the macro density in
one column. In this case, we set α as 0.9. Meanwhile, the
wirelength at the x-direction needs to be minimized:

MacroHPWLx =
∑
n∈N

( max
i∈S(n)

xi − min
i∈S(n)

xi) (8)

In TRPlaceFPGA-MP, we develop and train the column
determination model using online RL to identify the optimal
columns that minimize the wirelength increase in the x-
direction and prevent column overflow. The overall flow is
presented in Figure 3, which involves utilizing three masks
in one direction as input and generating a probability array
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Fig. 3: Column prediction model

as output. The construction of the three masks in the column
prediction model is as follows:

View mask. The view mask is constructed by calculating
the occupation ratio of the sites within a single column.
Each component of the view mask representing this ratio is
determined as follows:

pos maski =
ni
occ

ni
sites

(9)

In Figure 3, the 6x10 gridmap has 2 sites available for
placing BRAMs and 4 sites available for placing DSPs in
each column. Let’s consider the occupation of the sites in the
first two columns as examples. In the first column, a macro
consisting of two cascaded DSPs takes up 2 sites and a single
DSP macro takes up 1 site. The first element in the view mask
is 0.75. In the second column, a BRAM with a height of 5
grids occupies one site in this column. Therefore, the second
element in the view mask is 0.5.

Position Mask. It is a binary array that indicates whether
an overflow would occur when placing a macro in a specific
column. For columns that match the macro type and satisfy
ni
occ+m ≤ ni

sites, the corresponding elements in the position
mask are marked as 0. Otherwise, they are marked as 1. In
Figure 3, if a cascaded DSP macro that occupies 5 grids is to
be placed next, then the fourth element in position mask in
marked as 0 because only it satisfies the conditions.

Wire Mask. Each element in the wire mask represents the
increase in wirelength in the x-direction. Referring to Figure
3, the net bounding box is depicted in blue and spans the
middle three columns. In this case, if the macro is placed in
the first or last column, the increase in wirelength in the x-
direction would be 1. However, if the macro is placed in any
other column within the net bounding box, the increase in
wirelength would be 0.

The netilist structural information is crucial in determining
the position for each macro. Therefore, the netlist embeddings
are generated with the Variational Generative Autoencoder
(VGAE) [25] as a meta data shown in Figure 4. The graph
containing the the macros as vertices and the connections
between them as edges is created from the netlists. We also
define the an N × N adjacency matrix A and an N × 5
matrix X as the vertice features, where N is the number
of the vertices in the graph. The vertice features contain the

geometric information of macros like width, height and area,
as well as the categorical information (BRAM or DSP macros).
The inference model takes the adjacency matrix and vertice
features as the inputs and outputs the mean and variance of
the embedding distribution for each vertices. The generative
model samples each node embedding and reconstructs the
connections between the macros. The model is pretrained via
reducing the loss between the real and reconstructed adjacency
matrices. The netlist embeddings NE are calculated as the
average of the sampled embeddings for each vertice:

NE =
1

N

N∑
i=1

Zi (10)

where Z is the sampled embeddings for vertices.
The macro information includes the order index and the

corresponding size. The order of macro placement is deter-
mined by two factors: macro size and degree of connectivity.
We first sort all the macros in descending order based on
their sizes. This ensures that larger macros are considered first
during placement. Next, we prioritize the macros based on
their degree of connectivity, which represents the number of
connections to IOs and other macros. Macros with a higher
degree of connectivity are given higher order priority.

After obtaining the masks, netlist embeddings and macro
features, they are input into the policy network in Stage 1. The
policy network outputs the probability of placing the macro
on each column. From these probabilities, we select the top k
columns with the highest probabilities as candidate columns.
These candidate columns represent potential locations for
macro placement. In Stage 2, the search space is restricted
within the candidate columns.

2) Loss Function: The Proximal Policy Optimization (PPO)
algorithm [26] is employed to optimize the policy and value
networks. In training the policy network, the loss function is
formulated as follows:

Lpolicy(θ) = E[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)]
(11)

where the ratio rt(θ) =
πθ(at|st)

πθold
(at|st) and At = Gt−Vt denotes

the advantage function. Here we adopt the cumulative dis-
counted reward Gt =

∑V−t−1
k=1 γkrt+k+1. Vt is the estimated

value produced by the value network. The value network is
updated by optimizing the square error between the cumulative
reward Gt and the estimated value Vt, which is defined as:

Lvalue(ϕ) = E[(Gt − Vt)
2] (12)

C. Stage 2: Site Determination

In the Stage 2 of TRPlaceFPGA-MP, three types of pixel-
level feature maps with two dimensions, still namely posi-
tion mask, wire mask, and view mask, provide important
information for the placement process. These three masks are
discussed below:

Position Mask. The position mask is represented as a binary
matrix. In this matrix, a value of ”0” indicates a valid position
to place a macro, while a value of ”1” signifies an infeasible
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position. The position mask takes into account various con-
straints such as overlap, boundary constraints, heterogeneous
nature of the FPGA, and column restrictions from Stage 1.
Firstly, only the top k columns that match the type of the
macro to be placed in the Stage 1 are considered. Furthermore,
specific positions within a column are determined based on the
macro type. For example, every 5 grid positions are considered
feasible for placing BRAMs, while every 2.5 grid positions are
considered feasible for placing DSPs within a column.

Figure 5 illustrates an example of calculating the position
mask for positioning a cascaded macro with 2 DSPs. Let’s
assume that one DSP has already been placed on the gridmap.
The action probability array from Stage 1 indicates that
only the first column is eligible for macro placement. It can
be observed that only 2 sites are valid options for macro
placement. These valid sites are all located within the first
column. Notably, within the same column, the valid sites are
separated by a gap equivalent to the height of the DSP, which
amounts to 2.5 grids.

Wire Mask. The wire mask is a matrix consisting of
continuous elements ranging between 0 and 1. Its purpose
is to record the increase in MacroHPWL when placing the
macro in each grid. The MacroHPWL increase can be further
decomposed into increments in the x-direction and y-direction.
Suppose the bounding box of the net n which involves
the macros and IOs is denoted as (xdl, ydl, xur, yur). Here
(xdl, ydl) represents the coordinate of the left-down corner of
the bounding box, while (xur, yur) represents the coordinate

of the right-up corner of the bounding box on the FPGA board.
The increase of the MacroHPWL of the net n in the x-direction
when placing macros at (xm, ym) can be calculated as:

∆MacroHPWLx(xm, ym, n) =


xdl − xm, xm ≤ xdl

0, xdl < xm < xur

xm − xur, xm ≥ xur

(13)
The calculation for the MacroHPWL increase in the y-

direction follows a similar approach. Additionally, during the
wire mask calculation, it is crucial to consider the conversion
from the coordinates in the gridmap to the coordinates in the
original FPGA layout. This conversion ensures that the wire
mask accurately reflects the increase in MacroHPWL in the
context of the original FPGA layout.

View Mask. The view mask, denoted as fv ∈ {0, 1}33×300,
provides a global observation of the FPGA placement. In this
mask, a value of ”1” indicates that a grid is occupied by a
macro, while a value of ”0” indicates that the grid is empty.
For cascaded macros that contain n BRAMs, they cover a span
of 5n grids. Similarly for the cascaded macros with m DSPs,
they cover a span of 2.5m grids.

The policy network in Stage 2 takes the masks along with
the macro features and the netlist embeddings as the inputs. It
processes this input information and outputs the probability of
placing the macro on each grid location. The site to place the
macro is sampled from the probability distribution. The PPO
algorithm and the same loss function in section III-B are used
in the training of the policy and the value networks in Stage
2.

D. Search Space Transition

Column restrictions can indeed improve the efficiency of
searching for optimal macro placement sites. However, they
also introduce the risk of getting stuck in local optima due
to the limited search space. To overcome this challenge, a
strategy is employed that initially utilizes the column restric-
tion to narrow down the search space and identify potential
optimal solutions. Subsequently, the search space is expanded
to cover the entire gridmap, increasing the chances of finding
an improved solution.

In this strategy, the learning rate is increased as the search
space expands. By increasing the learning rate as the search



TABLE I: The information for sample designs in MLCAD2023 contest benchmark

Basic Information Macros/IOs
# Nodes # Nets # Macros # Placement Nets # BRAMs # DSPs # IOs

Design 182 566055 615920 2320 37173 1824 576

456

Design 185 575626 633913 2048 31623 1824 576
Design 190 576050 634364 2048 27875 1824 576
Design 197 594824 645901 2380 34013 1870 590
Design 207 622234 674462 2440 34959 1915 605
Design 220 651076 712876 2228 29502 1961 619
Design 232 697886 753658 2620 42517 2052 648
Design 240 707070 771230 2348 29201 2052 648

space expands, the algorithm can overcome the confinement
in the vicinity of local optimal solutions and enables it to
approach the global optimum more effectively.

IV. EXPERIMENT

A. Setups

In this section, we evaluate TRPlaceFPGA-MP in terms
of macro placement performance. We conduct the evaluation
using eight representative designs from the MLCAD2023
contest benchmark [4]. These designs feature cascaded macros
and do not have any regional constraints. Table I provides basic
statistics for the designs. The number of macros to be placed
on the FPGA board ranges from 2048 to 2620. The placement
nets refer to the nets which simply connect to the macros
and the IOs, and the number ranges from 27k to 37k. All the
macros are placed on the Xilinx Ultrascale+ xcvu3p FPGA
board [22] whose size is 206x300. We extract the gridmap
with the size of 33x300 from the FPGA board. The number
of BRAM and DSP sites is 2280 and 720, and the utilization is
relatively high with the ratios between 0.8 to 0.9. The positions
of the IOs are fixed in the designs. All the experiments are
performed on a server equipped with an Intel(R) Xeon(R)
Gold 6326 CPU and an NVIDIA A800-SXM4-80GB GPU.
To construct FPGA macro placement environment, we utilize
the Gym library [27] developed by OpenAI.

Little literature has explored the direct usage of RL in FPGA
macro placement. In this study, we compare our macro placer
with the commercial tool Vivado [28], the analytical macro
placer DreamplaceFPGA-MP [29] and a self-modified RL-
based FPGA macro placement model called MaskPlacef . The
followings are the details of the baselines:

• Vivado - here we use the version ML 2021.1. It adopts
the SimPL algorithm for the macro placement.

• DreamplaceFPGA-MP - it is a non-linear FPGA macro
placer with modeling the cell density as the electrostatics
system and also the winner of the MLCAD 2023 FPGA
macro placement contest. We adopt its CPU version in
our experiments.

• MaskPlacef - it is a one-stage RL-based macro placer
that builds upon the MaskPlace [13] by adapting it to the
specific characteristics of FPGAs. It shares similarities
with Stage-2 in TRPlaceFPGA-MP. In the implemen-
tation of TRPlaceFPGA-MP, multiple linear layers are
utilized to construct the policy and value networks in
Stage 1. In Stage 2, the network structure is similar to

that in MaskPlacef with an encoder based on ResNet-18
[30] and multiple convolution layers as the decoder.

The training process for the policy and value networks is
performed over a total of 300 epochs. For the column deter-
mination network, the training duration is set to 200 epochs.
The learning rate is selected from the set {2.5e−2, 2.5e−3}.
However, for TRPlaceFPGA-MP, which includes the column
determination process, the search space is initially limited to
candidate columns for the first 50 epochs and then expanded
to cover the entire FPGA board. During the search space
transition, the learning rate is adjusted to 2.5e−2, which is
subsequently reduced to 2.5e−3 after 100 epochs. Throughout
the online RL process, all transitions, consisting of state-
action-reward pairs, are stored in a buffer for model updates.

B. Macro placement performance comparison

We use the wirelength (WL) and runtime (RT) as the evalua-
tion metrics for the macro placement solution. The wirelength
is calculated as the total HPWL for the nets connecting the
macros and the IOs at the epoch reaching convergence. For the
RL-based macro placers TRPlaceFPGA-MP and MaskPlacef ,
the convergence is determined when the standard deviation of
the wirelength, after reaching convergence, falls below 5% of
the average wirelength. Smaller wirelength can result in fewer
demands on the routing resources and better routability for the
designs. The runtime simply considers the macro placement
process, whose record stops when it reaches convergence.

Table II demonstrates the comparison results. As the
place design command in Vivado involves both the macro
and standard cell placement, the runtime for Vivado is not
reported. TRPlaceFPGA-MP can reduce the wirelength by 9%,
14% and 1% compared with Vivado, DreamplaceFPGA-MP
and MaskPlacef , maintaining the superiority in the wirelength
optimization for the RL-based macro placers. Furthermore,
TRPlaceFPGA-MP significantly reduces the runtime for ex-
ploration by 61% when compared with the MaskPlacef . The
comparison results verify that TRPlaceFPGA-MP can search
for a better macro placement solution with more reduction in
the exploration time.

C. More discussions on convergence and runtime

1) Convergence Analysis: The training curves about WL
for TRPlaceFPGA-MP and the MaskPlacef , are demonstrated
in Figure 6. It is observed that both TRPlaceFPGA-MP and
MaskPlacef can converge to a similar level of WL within
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Fig. 6: The training curves concerning the wirelength (WL) for TRPlaceFPGA-MP and MaskPlacef

TABLE II: Comparison of the macro placement performance between different FPGA macro placers (WL: wirelength when
reaching convergence, R: ratio of the WL over TRPlaceFPGA-MP, RT: the time for macro placement before convergence)

Vivado DreamplaceFPGA-MP MaskPlacef TRPlaceFPGA-MP
WL R WL R RT (min) WL R RT (min) WL R RT (min)

Design 182 1523942 1.08 1660745 1.18 3.33 1427266 1.01 217.07 1412026 1 160.45
Design 185 1618835 1.09 1641812 1.1 3.56 1495516 1 275.4 1489328 1 244.93
Design 190 1791538 1.09 1790675 1.09 3.53 1666130 1.01 192.07 1648314 1 85.53
Design 197 1795939 1.12 1891286 1.18 3.46 1570223 0.98 261.41 1602263 1 125.48
Design 207 1916483 1.09 1958940 1.11 3.59 1782329 1.01 212.17 1763164 1 143.89
Design 220 1673995 1.06 1834076 1.16 3.6 1656815 1.05 250.42 1580075 1 128.22
Design 232 2034491 1.09 2176743 1.16 3.64 1892076 1.01 333.41 1871731 1 128.2
Design 240 1447351 1.08 1503430 1.12 3.81 1361072 1.01 339.49 1341562 1 150.25

Geomean 1715427 1796661 1597739 1580079
Ratio 1.09 1.14 1.01 1

TABLE III: Comparison of the exploration time for TRPlaceFPGA-MP and MaskPlacef (nc: the number of iterations to
achieve convergence, tCD: the time for the column determination, tSD: the time for site determination, RT: the time for the
overall macro placement before convergence, the unit for the time is minute).

TRPlaceFPGA-MP MaskPlacef TRPlaceFPGA-MP MaskPlacefDesigns
nc tCD tSD RT nc RT Designs

nc tCD tSD RT nc RT
Design 182 125 21.22 139.23 160.45 207 217.07 Design 207 100 23.34 120.55 143.89 186 212.17
Design 185 159 22.15 222.78 244.93 230 275.4 Design 220 100 19.58 108.64 128.22 174 250.42
Design 190 53 19.15 66.38 85.53 170 192.07 Design 232 58 24.63 103.57 128.2 204 333.41
Design 197 61 24.32 101.16 125.48 179 261.41 Design 240 78 22.05 128.2 150.25 220 339.49

Geomean 85.69 21.97 117.45 140.27 195.16 225.31
Ratio 1 1 1 1 2.28 1.61

300 epochs, but TRPlaceFPGA-MP achieves convergence
with significantly fewer iterations. Table III demonstrates
that TRPlaceFPGA-MP can converge within 86 iterations on
average, while MaskPlacef needs to take 196 iterations to
converge on average. The speedup in the convergence is 2.28x.
Notably, in Design 190 and Design 232, the acceleration in
convergence reaches as high as 3.20x and 3.51x, respectively.

The acceleration of convergence in TRPlaceFPGA-MP
compared to MaskPlacef can be attributed to two factors.

Firstly, TRPlaceFPGA-MP exhibits a smaller WL at epoch
0, indicating a better initial placement facilitated by two-
stage framework. Secondly, TRPlaceFPGA-MP demonstrates
a faster rate of WL reduction in the initial 50 epochs. This
increased speed can be attributed to the appropriate restriction
of the search space.

2) Runtime Decomposition and Analysis: We also ana-
lyze the exploration time for the TRPlaceFPGA-MP and
the MaskPlacef before convergence. The comparison of the



exploration time is presented in Table III. The exploration
time for TRPlaceFPGA-MP can be decomposed into the time
required for both column determination tCD and the time
for the site determination tSD . For MaskPlacef , it solely
involves the time for site determination tSD using online RL.
The results in Table III demonstrate that TRPlaceFPGA-MP
reduces the exploration time from an average of 3.75 hours
to 2.3 hours. The acceleration is mainly attributed to the
column restriction in stage 2 for TRPlaceFPGA-MP. Without
considering the time expense of the column determination tCD

, the speedup is 1.91x.

V. CONCLUSION

In this paper, we propose an FPGA macro placer using
online reinforcement learning and a two-stage decomposition
to accelerate convergence. Our approach can still reduce the
wirelength by 9% and 14% when compared with Vivado and
the state-of-art academic FPGA placer DreamplaceFPGA-MP.
Meanwhile, a remarkable 2.28x acceleration in convergence
rate and a 61% decrease in exploration time is achieved
compared to one-stage RL-based FPGA placers. The reduced
exploration time brings RL-based FPGA placers closer to
more practical application scenarios with maintenance of the
superiority in placement performance optimization.
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