2025 International Symposium of Electronics Design Automation (ISEDA) | 979-8-3315-3696-1/25/$31.00 ©2025 IEEE | DOI: 10.1109/ISEDA65950.2025.11100533

2025 International Symposium of Electronics Design Automation

OASALT: On the Construction of
Obstacle-Avoiding Steiner shAllow-Light Tree

Wing Ho Lau
CSE Department, CUHK
Hong Kong SAR
whlau22 @cse.cuhk.edu.hk

Jinwei Liu
CS Department, HKBU
Hong Kong SAR

Abstract—In routing tree generation, two important metrics
are introduced to evaluate the quality. Wirelength (WL) is
directly related to power consumption, routing resource usage
and wire delay while pathlength (PL) is indicative of the wire
delay. SALT [1] and PD-II [2] are the leading algorithms for
the construction of shallow-light routing trees. However, they
cannot handle the real designs with blockages. In this paper,
we extended the SALT to be Obstacle-Avoiding Steiner shAllow-
Light Tree (OASALT) to handle obstacles. First, we improve the
time complexity of Lin’s [3] Obstacle-Avoiding Spanning Graph
(OASG) from O(n?logn) to O(n?). In addition, we extended
the CL [4] algorithm to generate Obstacle-Avoiding Rectilinear
Steiner Minimum Arborescence (OARSMA). The experiment
shows that OASALT can achieve a better tradeoff between WL
and PL under the cases with obstacles, by combining Obstacle-
Avoiding Rectilinear Steiner Minimum Tree (OARSMT) and
OARSMA. Compared to performance-driven Obstacle-Avoiding
Rectilinear Steiner Tree (PDOARST) [5], OASALT improves the
worst delay by 15% and WL by 10% on average.

Index Terms—shallow-light tree, routing, obstacle-avoiding, tim-
ing optimization, Steiner tree

I. INTRODUCTION

The generation of routing trees is one of the most essen-
tial problems within the field of physical design. The main
objective of the routing tree construction is to minimize the
total wirelength (WL) and the path length (PL). The WL is
intrinsically related to power consumption, routing resource
utilization, and wire delay [1], while the PL is indicative of the
timing quality. The Rectilinear Steiner Minimum Tree (RSMT)
is constructed to minimize WL, with wide application in var-
ious tasks including floorplan and placement, global routing,
wire length, and timing estimation. A prominent framework
for the generation of RSMT is the FLUTE [6] algorithm. The
PL can be minimized by employing the shortest path tree
methodology. In the context of Rectilinear Steiner trees, the
tree is constructed such that all paths from the root are the
shortest, achieved through the Rectilinear Steiner Minimum
Arborescence (RSMA). Efficient heuristic algorithms, such as
those discussed in [4], are employed to construct RSMA.

Optimizing either the WL or the source-to-sink PL in the
routing tree generation problem is relatively straightforward.
However, enhancing one metric does not necessarily result in
the enhancement of the other. Numerous studies turn to the
simultaneous optimization of two key objectives: source-to-
sink PL (shallowness) and WL (lightness). Prim-Dijkstra [2],

979-8-3315-3696-1/25/$31.00 ©2025 IEEE

jinweiliu@comp.hkbu.edu.hk

Qin Luo
CSE Department, CUHK
Hong Kong SAR
qluo22 @cse.cuhk.edu.hk

Evangeline F.Y. Young
CSE Department, CUHK
Hong Kong SAR
fyyoung @cse.cuhk.edu.hk

[7] and SALT [1] are two main methods in the construction
of the Steiner Shallow-light tree. The Prim-Dijkstra algorithm
effectively balances the trade-off between constructing the
shortest path tree and the minimum spanning tree. The SALT
algorithm starts with identifying the break points requiring
rerouting in the minimum spanning tree, and utilizes the
CL [4] algorithm to route the connections from the source
to these break points. Both algorithms exhibit commendable
performance in generating shallow-light routing trees.

With advancements in IC technology, contemporary
nanometer-scale circuit designs incorporate an increasing num-
ber of routing obstacles such as macro cells, IP blocks, mod-
ules, and congested regions on 3D-IC [8] or FPGAs [9], [10].
Traditional RSMT and RSMA algorithms are inadequate to
address the complexities of modern design routing. Therefore,
the implementation of an Obstacle-Avoiding routing tree is
essential. Existing works have proposed some solutions to
either the lightness-driven or the timing-driven routing tree
construction under the obstacles, respectively. The Obstacle-
Avoiding Rectilinear Steiner Minimum Tree (OARSMT) is uti-
lized to minimize the wirelength only under the obstacles. Its
construction problem has been examined for many years and
can be classified into three approaches: 1) maze-routing [11],
[12]; 2) escape graph [3]; and 3) correction approach [13],
[14]. Li [11] has applied maze routing to address the challenge
of OARSMT. His approach involves employing a maze router
to determine the shortest paths to successive pins and subse-
quently utilizing a minimum spanning tree algorithm to select
from the identified edges. Chow [12] has improved the maze
routing based method and proposed a new parallel approach.
The escape graph method [3] constructs a graph that retains
information pertinent to circumventing obstacles. In contrast to
the maze routing approach, this method significantly reduces
both run time and memory consumption by necessitating the
traversal of edges only, rather than every individual grid point.
Correction approaches like FOARS [13] firstly generate an
obstacle-aware Steiner tree (OAST), and then rectilinearize
the pin-to-pin connections avoiding obstacles to construct an
OARSMT. Regarding the construction of the timing-driven
routing tree under obstacles, Lin proposed [5] a performance-
driven Obstacle-Avoiding Rectilinear Steiner Tree to improve
delay and slack for the Obstacle-Avoiding Rectilinear Tree.
However, the trade-off of the WL is huge.

418
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 11,2025 at 08:44:13 UTC from IEEE Xplore. Restrictions apply.

Since limited research concentrates on constructing the
shallow light tree for Obstacle-Avoiding Routing, we propose
OASALT, a new shallow-light tree construction framework
in the Obstacle-Avoiding scenario to improve timing and
wirelength simultaneously. Our work improves the result based
on 2 major adaptations.

1) We improve the time complexity of Lin’s Obstacle-
Avoiding Spanning Graph algorithm [3] from O(n%logn) to
Oomn?)

2) We extend the CL [4] algorithm as Obstacle-Avoiding
CL (OACL) to generate Obstacle-Avoiding Rectilinear Steiner
Minimum Arborescence (OARSMA).

Experimental results show that our methods outperform
performance-driven Obstacle-Avoiding Rectilinear Steiner
Tree (PDOARST) in both wirelength(WL), worst delay (WD)
and average delay (AD). Compared to other OARSMT routers,
our Obstacle-Avoiding SALT achieves significant WD and AD
drops with small WL trade-off.

II. PRELIMINARIES
A. Shallow-light Routing Tree

The routing tree is composed of a set of pins and intercon-
nections between all pins within the Manhattan space. Denote
P = {po,p1,...,pn} as the set of pins of a given net. py serves
as the source, while the remaining elements are designated
as sinks. Denote G = {V,E} as the weighted connected
graph, with edge weights corresponding to the Manhattan
distances between vertices. A Steiner Tree T = {V’/, E’}
, V' C V,E' C FE connects all pins with newly inserted
points from V' named Steiner Points. In the Obstacle-Avoiding
Routing Tree generation problem, vertices V;, and edges Ej
do not touch the interior of obstacles. Denote G, = {V4, Ep},
V, CV, E, C F as the weighted connected graph representing
the Obstacle-Avoiding Routing Tree problem. The Obstacle-
Avoiding Steiner Tree is constructed under the graph Gj.

There are primarily two objectives in the Shallow-light
Routing Tree Construction Problem, namely wirelength (light-
ness) and pathlength (shallowness) [1], [2]. The wirelength
can be quantified by the total weight of the tree. The lightness
metrics are often referred to as normalized by the minimum

tree, expressed as % for the Rectilinear Steiner tree,

and m for the Obstacle-Avoiding Steiner tree. It is

important to note that w(-) indicates the weight of a tree. When
optimizing timing, two prevalent metrics are employed: the
normalized path length and shallowness. Let d(-) represent the
Manhattan distance. The first metric, normalized path length,
utilized by PD-II [2], is derived by the total PL normalized
by the total shortest-path distance, indicated as W

veEV G(PO,U)

Zwev dr(po,v)
m for the Obstacle-

Avoiding Steiner tree. The second metric, used by SALT [1],
is shallowness, which is the maximum ratio of pathlength with

its shortest distance , represented as max{ 4z (po,v) |v € P} for

i : da(po,v)
K
%h} € P} for the Obstacle-

for the Steiner tree and

the Steiner tree and max{
Avoiding Steiner tree.

“Fam
o B

Fig. 1. Obstacles cannot overlap with other obstacles, pins or edges. However,
line-touched is allowed.

I OARSMT router l

I

Run Dijkstra on OASG to find
the vertices pairwise distance
1

Finding breakpoints by DFS l

Run the Obstacle-avoiding CL |
{

I Merge the OACL and OARSMT |
!

| L-shape flipping |

Shallowness-constrained edge
substitution

Fig. 2. The workflow of Obstacle-Avoiding SALT

B. Problem Formulation

In the problem of generating Obstacle-Avoiding routing
trees, a collection of non-overlapping rectangular blockages
and pins is provided. Denote B = {b1,ba,...,by} as the set
of non-overlapping rectangular blockages where m € Z7.
Although these rectangular blockages do not overlap with
each other, they may touch at the edges or corners. Let
P = {p1,p2, ..., pn} represent the set of pins where n € Z7.
All the pins in P are prohibited from being placed inside
blockages B, while pressed lines and corners within block-
ages B are permissible (Shown in Figure 1). The objective
is to construct a routing tree minimizing the lightness and
shallowness without touching the interior of obstacles [11].

III. METHODOLOGY

The overall framework of our work, Obstacle-Avoiding
Steiner shAllow-Light Tree (OASALT), is inspired by the
SALT [1]. We integrate the Obstacle-Avoiding Rectilinear
Steiner Minimum Tree (OARSMT) and Obstacle-Avoiding
Rectilinear Steiner Minimum Arborescence (OARSMA) to
generate the initial solution. We first generate an OARSMT
and select breakpoints that violate shallowness constraints.
The breakpoints are connected to the source by OARSMA
in order to fix the shallowness violation. It offers a smooth
trade-off between the wirelength (WL) and timing-related
metrics, including shallowness and normalized path length. By
integrating the 2 minimum trees, OARSMT and OARSMA,
OASALT efficiently minimizes wirelength with the shallow-
ness constraint.

Figure 2 shows the overall flow of the OASALT. The
OASALT starts with the OARSMT. We use FOARS [13] to
generate the OARSMT due to its effectiveness in both WL

419
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 11,2025 at 08:44:13 UTC from |IEEE Xplore. Restrictions apply.

and runtime. We will run depth-first search (DFS) on the
OARSMT to identify breakpoints using the distance calculated
on the Obstacle-Avoiding Spanning Graph (OASG) instead
of the Manhattan distance since the Manhattan distance may
not accurately represent the edge cost between nodes blocked
by obstacles. The Obstacle-Avoiding CL (OACL) is used to
generate the OARSMA connecting all breakpoints and the
source. Finally, L-shape flipping and Shallowness-Constrained
Edge Substitution (SCES) are used to further improve WL
within the shallowness constraint.

A. Obstacle-Avoiding Spanning Graph

The Obstacle-Avoiding Spanning Graph (OASG) [3] is
a conventional approach commonly employed to tackle the
Obstacle-Avoiding Rectilinear Steiner Minimum Tree (RSMT)
problem. An escape graph is created by connecting the vertices
of obstacles and pins, aiding in the determination of paths that
avoid these obstacles. By concentrating exclusively on the pins
and corners of obstacles, the OASG approach significantly cuts
down on computational time and memory usage, offering an
advantage over traditional maze-routing methods.

Our graph formulation is similar to [3]. A vertex can be a
pin or one of the four corners of the obstacles. Vertex v; is
considered a neighbor of vertex vy if no other vertex belonging
to an obstacle resides within or on the edges of the bounding
box defined by v; and vy. The OASG is proven to imply a
rectilinear shortest path between any two vertices [3].

Initially in the algorithm, we can construct three two-
dimensional matrices by converting the routing area into a
Grid-graph. The first matrix named id serves as a look-up table
to determine if the provided coordinate (x,y) corresponds
to a vertex or the boundary of obstacles. It helps to get
the vertex index immediately given a certain location. Two
additional matrices store the distance of the most recent left
(and respectively, bottom) object. Algorithm 1 details the
process of constructing the distance matrix for the nearest
object on the left.

We will execute Algorithm 2 in four distinct quadrants
to build the OASG. Algorithm 2 illustrates the process by
which we determine the addition of edges for a chosen
vertex v located in the top-left area. First, we will set up a
bounding box using the vertex v location (z,y) and (z—o0,y).
During the iteration process, we enlarge the bounding box
upwards. During the expansion, if the bounding box touches
any object, it will move the left boundary to avoid overlapping
obstacles. We ensure a bounding box remains free of obstacles
to determine if a vertex can be added into the OASG. An
edge is added into the OASG when the corresponding vertex
lies inside the bounding box during the expansion process.
Figure 3 shows an example where we initiate the bounding
box. As the bounding box makes contact with the top-right
corner of obstacle A and it is the initial vertex, the associated
edge is added into the OASG. During expansion, the top-right
corner of Obstacle C is encompassed within the bounding box,
resulting in the addition of its edge to the OASG. The variable

Fig. 3. The example of adding edge of a vertex for top-left corner.

Algorithm 1 Initialize the distance matrix which store the
distance for the nearest left object

Input:
dist /*A 2d array storing the distance for the last object on the left*/
id /*A 2d matrix that store the id of vertex given a 2d coordinates*/
Start
: for y <— 1 to height do
count <— 0
for z < 1 to width do
if id[x][y] is a vertex or boundary of obstacles then
count <— 0
end if
dist[x][y] <— count
count < count + 1
end for
end for=0

mindist monitors the position of the left edge of the boundary
box.

The overall complexity involved in constructing the OASG
is O(n?). Initializing the distance matrix required two nested
loop over the x and y axes, resulting in a time complexity of
O(n?). The time complexity for adding edges from a vertex to
the OASG in each of the four quadrants is O(n), as it involves
2 single loops, one iteration in the x direction and another one
in the y direction. The overall complexity for evaluating all n
vertices is O(n?). The worst-case time complexity, as noted
in [3], is O(n? logn) because adding a new Steiner Node can
alter the blocking information, making it non-constant in this
scenario. Our implementation, as opposed to [3], exclusively
operates on a two-dimensional array, enabling parallelization
with multi-threading or on a GPU.

B. Obstacle-Avoiding CL

The CL [4] algorithm has been proposed as a solution for the
RSMA problem.The basic concept of CL involves repeatedly
introducing a new Steiner point to maximize the overlap length
for a chosen pair of points. Extending it to include obstacle
avoidance is straightforward by employing Grid-graph or
OASG. Figure 4 illustrates a scenario of Obstacle-Avoiding CL
(OACL) utilizing OASG. Initially, we will execute Dijkstra’s
algorithm to derive the shortest-path tree on the OASG. At
the beginning, all sinks will be added to the active set. Within
the loop, back-tracing might be performed on the active node
set. Upon discovering a node that has been visited from 2
different sinks, we can determine the maximum overlap of

420
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 11,2025 at 08:44:13 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 2 Find the neighbors of vertex v in top-left region

Input:
dist /*A 2d array storing the distance for the last object on the left*/
id /*A 2d matrix that store the id of vertex given a 2d coordinates*/
v(x,y) /*the location of the vertex*/
Start:
. mindist <— co /* minimum distance */
: flag < false /* Check if first vertex is added */
: while (x,y) is not the boundary of obstacle or the height of routing region
do
curdist <— dist[x][y] /* current distance */
if (mindist > curdist and flag) or (mindist > curdist and not flag) then
if id[x-curdist][y] is a vertex then
Connect vertex[id[x][y-curdist]] and v in OASG
flag < true
end if
end if
mindist <— min(curdist, mindist)
y+y+1
end while=0

NN

PR

Steiner Nodes by examining the related edges. The new Steiner
Node will be added to the active set, replacing the 2 initial
sinks that will be removed. The process will halt if the active
set contains no nodes.

Fig. 4. The blue node is active sink and black node is inactive node. In
each iteration, we replace 2 active sinks with new Steiner node that maximize
Overlap length. The OARSMA is generated when the set of active sink is
empty

OACL might not achieve good performance in OASG when
contrasted with the Grid-graph. Figure 5 presents an instance
where the performance of OACL on OASG is inferior to
that on Grid-graph configurations. In OASG, we overlook
situations where two vertices are partly obstructed, preventing
us from identifying the optimal Steiner point in each iteration.
As depicted in Figure 5b, it is apparent that the maximum
overlap Steiner point is positioned at the intersection of the
bounding box created by the source with the two specified
sinks. However, an obstruction blocks the bounding box,
making it hard to locate the necessary Steiner. Thus, we apply
a grid graph for OACL, which has more necessary vertices
than OASG, to achieve an enhanced OARSMA with reduced
wirelength.

C. Post-processing

L-shape flipping and shallowness-constrained edge substi-
tution (SCES) is used to further improve the performance.
SCES is proposed by SALT to reduce wirelength without

(c)

Fig. 5. (a) OARSMA generated using OASG (b) The bounding box formed
by source with 2 given sinks respectively (c) OARSMA generated using Grid-

graph
(@)

(c)
Fig. 6. (a) Before flipping (b) Remove unnecessary Steiner node (c) After flipping

0 UTQ
(b)

Fig. 7. (a) Before SCES (b) Substitute edge using OACL

—

(a)

violating the slack constraint. The initial SCES lacks the
capability to manage obstacles. We enhance it to address this
limitation. Initially, we will eliminate certain Steiner nodes
to provide more opportunities for enhancement through L-
shape flipping. We run BFS from the leaf node and check
the ancestor of the selected node to see if both two L-shape
paths can be used and whether the intermediate unnecessary
nodes can be deleted safely. A node is unnecessary if it is
not a sink and only has one child. The vertex removal should
guarantee that the L-shape flipping is safe by checking whether
obstacles are on the L-shape path. Figure 6 shows an example
of Steiner node removal. The leaf node can be connected to
the source using both 2 L-shape paths despite some obstacles
being inside the bounding box. Hence, certain Steiner nodes
in Figure 6a are deleted before flipping. In SCES, we aim to
apply Edge substitution to minimize wirelength while adhering
to the shallowness constraint. Nonetheless, a blockage may
exist which makes direct substitution of edges impractical.
Therefore, we shall perform the OACL process among the
target node, candidate node, and the candidate node’s parent to
identify a path for the candidate node that bypasses obstacles.
The goal of employing OACL is to substitute the edge linking
the target node to its parent with a shorter edge, ensuring the
timing constraint is not breached.

IV. EXPERIMENT RESULTS

In this section, two sets of experiments were conducted,
among which we firstly compared the tradeoff between the
lightness and the shallowness, and then validated the superior-
ity of OASALT in the realistic wirelength and delay reduction.

421
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 11,2025 at 08:44:13 UTC from |IEEE Xplore. Restrictions apply.

TABLE I
STATISTICS OF OARSMT BENCHMARKS (pin DENOTES THE NUMBER OF
PINS IN A NET, obs DENOTES THE NUMBER OF OBSTACLES)

Case | rcOl | rc02 | rc03 | rc04 | rcO5 rc06
pin 10 30 50 70 100 100
obs 10 10 10 10 10 500

Case | rc07 | rcO8 | rc09 | rcl0 | rcll rcl2
pin 200 | 200 200 500 | 1000 1000
obs 200 800 | 1000 | 100 100 10000

—e— OAPDII
—o— OASALT

Shallowness

1.00 105 110 115 120 125 130

Lightness

(a) Benchmark 1

—&— OAPDII
—e— OASALT

IS

w

Shallowness

110 115 120 125 130
Lightness

1.00 1.05

(b) Benchmark II

Fig. 8. Shallowness v.s. lightness on different benchmarks

All the algorithms here were implemented in C++ language
on a 2.9 GHz Intel Xeon server.

A. Comparison of Lightness and Shallowness

In the first experiment, we would like to evaluate the
trade-off curve of OASALT with different e. There are no
other works focusing on the Obstacle-Avoiding shAllow-Light
Tree. Therefore, we modify PDII to Obstacle-Avoiding PDII
(OAPDII) to handle obstacles. We use FOARS to fix the over-
lapping edge and OASG to compute the distance in OAPDII,
with the objective of having a more accurate cost calculation.
We randomly generate 2 sets of benchmarks to compare the
OASALT with OAPDII. The Benchmark I contains 150 nets
with 16-32 pins and 32-64 obstacles while the Benchmark II
contains 150 nets with 64-128 pins and 128-256 obstacles.
The Figure 8-9 shows the trade-off between shallowness and
lightness, and the trade-off between normalized path length
and lightness. a and € are user-defined parameters for the
trade-off in OAPDII and OASALT respectively. The parameter

—e— OAPDII
—8— OASALT

Normalized path length
-
"

1.14

1.00 1.05 110 1.15 1.20 125 1.30

Lightness

(a) Benchmark 1

—&— OAPDII
—e— OASALT
1.8

Iy
£y

Normalized path length
o
IS

-
N

1.0

100 1.05 110 115 120 125 130

Lightness
(b) Benchmark II

Fig. 9. Normalized path length v.s. lightness on different benchmarks

« varies from 0 to 0.9 with an increase of 0.1, while the
€ follows a geometric sequence 0.05 x 1.5, where n is an
integer ranging from O to 9. The lightness is normalized by
the wirelength (WL) of the OARSMT, and the normalized path
length is calculated as total path length divided by the sum of
the shortest source-to-sink distance.

It is obvious from the experiment that the Pareto frontiers of
OASALT are much closer to the origin compared to OAPDII.
OAPDII uses edge-flipping to iteratively improve the routing
tree. However, the edge-flipping cost is hard to construct
and may be inaccurate when obstacles exist. OASALT avoids
this inaccurate calculation by integrating both OARSMT and
OARSMA. Therefore, it can retain the advantage of lower WL
in both OARSMT and OARSMA.

B. Comparison of Wirelength and Delay

In the second experiment, we consider wirelength and delay
of a net directly. Here we use the benchmark named Obstacle-
Avoiding Rectilinear Steiner Minimum Tree (OARSMT), that
is widely used in other OARSMT research. It contains 12 cases
(rc01-12) with the corresponding statistics in Table I.

We compared the performance of our algorithm to other pre-
vious work related to OARSMT and timing-driven Obstacle-
Avoiding Rectilinear Steiner tree (OARST). The Maze-routing
(MZ) [11] and FOARS [13] are implemented manually in our
platform. The result of performance-driven Obstacle-Avoiding
Rectilinear Steiner Tree (PDOARST) is directly referenced
from the paper [5]. The delay is calculated by the Elmore

422
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 11,2025 at 08:44:13 UTC from |IEEE Xplore. Restrictions apply.

TABLE II
THE COMPARISON FOR WIRELENGTH(WL) (um), WORST DELAY (WD) (ps), AVERAGE DELAY (AD) (ps) BETWEEN PDOARST [5] , MAZE-ROUTING
[11], FOARS [13], AND OURS OASALT

Case WL (um) WD (ps) AD (ps)
Bl MZ | FOARS | OURS Bl MZ | FOARS | OURS Bl MZ | FOARS | OURS
01 29140 | 26040 | 25980 | 27780 | 3384 3906 3810 3191 3008 3149 3093 | 27713
rc02 42970 | 42010 | 42110 | 45050 | 4085 4841 3964 3984 3901 3734 3410 | 3363
1c03 62270 | 54560 | 55810 | 57570 | 57195 9479 9135 6193 1847 6642 6925 | 4871
1c04 73870 | 59590 | 59350 | 68290 | 5908 8073 7880 5228 4819 6154 5978 | 4466
1c05 §7320 | 74680 | 74330 | 78040 | 6764 13521 | 10563 | 6377 6097 | 10054 | 7672 | 5438
1c06 04742 | 81682 | 81432 | 82466 | 11396 | 9985 80T 1 7631 7817 7119 6905 | 6268
rc07 128875 | 111733 | 111129 | 115990 | 11016 | 11834 | 13399 | 10379 | 9725 9223 9992|8004
1c08 137116 | 116825 | 117442 | 122441 | 11375 | 15379 | 15597 | 8996 | 10562 | 12659 | 13162 | 7739
rc09 149274 | 113974 | 115427 | 118223 | 15371 | 24438 | 18159 | 13060 | 14190 | 17892 | 15166 | 10035
rc10 186030 | 167440 | 167500 | 174090 | 15815 | 19265 | 19798 | 14252 | 13758 | 13801 | 14691 | 11534
rell 253039 | 235391 | 233696 | 240884 | 32196 | 51397 | 62008 | 19224 | 22198 | 38778 | 44313 | 16556
rcl2 1297170 | 763569 | 754942 | 774459 | 166205 | 433910 | 340686 | 128261 | N/A | 317642 | 242419 | 88744
Average ratio 1 0.8478 | 0.8483 | 0.8904 1 T4715 | 13556 | 0.8614 T 12153 | 1.1927 | 0.8415
TABLE III trade-off between wire length (WL) and path length (PL)

RUNTIME(S) BETWEEN PDOARST [5], MAZE-ROUTING [11], FOARS
[13], AND OURS OASALT

Case Runtime(s)

[5] MZ FOARS | OURS
rc01 0.01 0.03 0.047 0.05
rc(02 0.02 0.03 0.05 0.054
rc03 0.03 0.04 0.05 0.062
rc04 0.04 0.05 0.048 0.069
rc05 0.05 0.06 0.05 0.097
rc06 0.45 0.341 0.085 0.46
rc07 0.68 0.422 0.091 0.862
rc08 1.07 0.822 0.119 1.529
rc09 1.93 1.118 0.15 2.112
rcl0 0.54 0.135 0.078 2.289
rcll 1.17 0.56 0.109 8.019
rcl2 135.31 122.672 6.055 157.844

delay model [15] with the settings as follows: 440 ohms
for driver resistance, 0.076 ohms/um for unit wire resistance,
0.118 Ff/um for unit wire capacitance, and 1 Ff for the loading
capacitance of the sinks. € is a user-defined parameter for the
trade-off in SALT which is set as 1.

We compared both wirelength (WL), worst delay (WD)
and average delay (AD). The table II shows the experiment
results between our OASALT and other OARST router. Since
PDOARST optimizes both timing and WL, we use PDOARST
as the baseline. Compared to PDOARST, our OASALT is
achieving 10 % less for WL and 14 % less for both WD and
AD. It demonstrates excellent performance in optimizing delay
and WL. Compared to OARSMT router, i.e. MZ and FOARS,
the average 30% reduction in worst delay and average delay
with the simply 6% increase in WL. The experiment results
indicate the higher efficiency and the better tradeoff between
total WL and delay reduction achieved by OASALT.

V. CONCLUSION

In this work, we propose Shallow-light Tree for the
Obstacle-Avoiding Routing problem to improve timing
and wirelength simultaneously. Our approach employs an
Obstacle-Avoiding Spanning Graph to have a more accu-
rate calculation for the break points. We adopt Obstacle-
Avoiding CL to get OARSMA. We have extended the SALT
as OASALT to incorporate obstacle-avoidance capabilities.
The results demonstrate that OASALT offers a more balanced

metrics. Additionally, the experimental results show that our
router OASALT achieves good performance compared to other
OARSMT routers [11], [13] and performance-driven routing
tree [S5] algorithms.

REFERENCES

[1] G. Chen and E. F. Y. Young, “Salt: Provably good routing topology by a
novel steiner shallow-light tree algorithm,” IEEE TCAD, vol. 39, no. 6,
pp. 1217-1230, 2020.

[2] C. J. Alpert, W.-K. Chow, K. Han, A. B. Kahng, Z. Li, D. Liu, and
S. Venkatesh, “Prim-dijkstra revisited: Achieving superior timing-driven
routing trees,” in Proc. of ISPD. NY, USA: ACM, 2018, p. 10-17.

[3] C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, and C.-L. Yang,
“Obstacle-avoiding rectilinear steiner tree construction based on span-
ning graphs,” IEEE TCAD, vol. 27, no. 4, pp. 643-653, 2008.

[4] J. Cérdova and Y.-H. Lee, “A heuristic algorithm for the rectilinear
steiner arborescence problem,” Tech. Rep., 1994.

[5] Y.-H. Lin, S.-H. Chang, and Y.-L. Li, “Critical-trunk-based obstacle-
avoiding rectilinear steiner tree routings and buffer insertion for delay
and slack optimization,” IEEE TCAD, vol. 30, no. 9, pp. 1335-1348,
2011.

[6] C. Chu, “Flute: fast lookup table based wirelength estimation technique,”
in ICCAD, 2004, pp. 696-701.

[7]1 C. Alpert, T. Hu, J. Huang, A. Kahng, and D. Karger, “Prim-dijkstra
tradeoffs for improved performance-driven routing tree design,” IEEE
TCAD, vol. 14, no. 7, pp. 890-896, 1995.

[8] J. Knechtel, E. F. Y. Young, and J. Lienig, “Planning massive inter-
connects in 3d chips,” IEEE TCAD, vol. 34, no. 11, pp. 1808-1821,
2015.

[9] W.-K. Mak and E. FE. Y. Young, “Temporal logic replication for dynami-

cally reconfigurable fpga partitioning,” in Proc. of the 2002 ISPD. NY,

USA: ACM, 2002, p. 190-195.

M. Hiibner, C. Schuck, M. Kiihnle, and J. Becker, “New 2-dimensional

partial dynamic reconfiguration techniques for real-time adaptive micro-

electronic circuits,” in ISVLSI, 2006.

L. Li and E. F. Y. Young, “Obstacle-avoiding rectilinear steiner tree

construction,” in ICCAD, 2008, pp. 523-528.

W.-K. Chow, L. Li, E. F. Y. Young, and C.-W. Sham, “Obstacle-avoiding

rectilinear steiner tree construction in sequential and parallel approach,”

Integr. VLSI J., vol. 47, no. 1, p. 105-114, Jan. 2014.

G. Ajwani, C. Chu, and W.-K. Mak, “Foars: Flute based obstacle-

avoiding rectilinear steiner tree construction,” in Proc. of the 19th ISPD.

NY, USA: ACM, 2010, p. 27-34.

Z. Shen, C. Chu, and Y.-M. Li, “Efficient rectilinear steiner tree

construction with rectilinear blockages,” in ICCD, 2005, pp. 38—44.

W. C. Elmore, “The transient response of damped linear networks with

particular regard to wideband amplifiers,” J. Appl. Phys., vol. 19, no. 1,

pp. 55-63, 1948.

[10]

[11]

[12]

[13]

[14]

[15]

423
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 11,2025 at 08:44:13 UTC from |IEEE Xplore. Restrictions apply.

