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Abstract—Macro placement significantly influences the performance
of the FPGA placement. However, constraints in modern designs like
relative placement constraint (RPC) and regional constraint (RC) are
often overlooked in existing routability-driven FPGA placers during macro
placement. These constraints introduce challenges in optimizing routability
during global placement and macro legalization stages. In this paper, we
propose a novel macro placer that specifically addresses these constraints
while optimizing routability. Our macro placer integrates macro size-aware
pseudo nets, RC guided spreading, and multi-stage look-ahead legalization
techniques to enhance routability with specified design constraints.
Experimental results show that compared with DreamplaceFPGA-MP
and the macro placer in Vivado, our proposed approach achieves 6% and
8% total routing score reduction on the MLCAD2023 contest benchmark.
Moreover, the place and route time is reduced by 3.5% on average
and up to 43% after our macro placer is integrated into Vivado. These
compelling results demonstrate the efficiency gains and superior routability
optimization achieved through our approach.

I. INTRODUCTION

FPGAs play a pivotal role in circuit prototyping [1] and hetero-

geneous computing [2] for the reconfiguration capabilities. Within

the FPGA implementation process encompassing logic synthesis,

technology mapping, placement and routing, FPGA placement holds

utmost importance. It maps the cells in the logical netlist onto the

locations on FPGA boards and significantly determines the success

of the routing. Specifically, FPGA placement is divided into global

placement and legalization, where the global placement determines

rough locations with the minimization of the wirelength and the cell

density, while the legalization shifts each cell to the legal location with

slight displacement. In contrast to ASIC placement, FPGA placement

is challenging due to its heterogeneous nature and the limited resources

for place and route [3].

Look-up tables (LUT), flip-flops (FF), digital signal processors

(DSP), block memories (BRAM), and input/output buffers (IO) are

five essential resources to be placed within modern FPGAs [4]. Several

LUTs and FFs are packed into one Configurable Logic Block (CLB).

The sites containing these five resources differ in physical size on

FPGA boards with different importance to the placement. For example,

on the Xilinx Ultrascale+ xcvu30 board [5], the BRAM block is five

times larger than the CLB, and the DSP block is twice the size of the

CLB. The locations of the BRAMs and DSPs have the most significant

influence on the overall performance of the placement, distinguished

by their significantly larger sizes and intricate interconnections with

the other cells. Therefore, in the usual categorization, BRAMs and

DSPs are regarded as macros, and LUTs and FFs are treated as

standard cells in the placement [6], [7]. Macro placement serves as

an individual stage in the existing quadratic [8], [9] or nonlinear

mixed-size placers [10], [11], which firstly determine the positions of

the macros and then place the standard cells with macros fixed.

Modern circuit designs incorporate distinctive and challenging

constraints that significantly influence the FPGA macro placement.

One is relative placement constraint (RPC), stemming from the

hierarchical design methodology [12]–[14]. RPC requires that the cells

Fig. 1: Average placement and routing time using Vivado for the

designs with and without constraints on the MLCAD2023 benchmark

with the same constraint must maintain a specific relative position to

each other. Another is regional constraint (RC) [15]–[17], where the

back-end engineers group related logic and assign it to a region to

achieve timing closure easily. While both RPC and RC are supported

in the commercial FPGA tool Vivado (like rloc and pblock) [18], most

academic FPGA placers do not take these two kinds of constraints

simultaneously into the routability optimization. Among these placers,

a few simply consider the RPC by amalgamating the macros in

the same RPC into a large cascaded macro that participates in the

overall placement [19]–[22], without no further techniques to improve

routability. Actually, the occurrence of the RPC and RC increases

difficulties in finding macro placement solutions with less congestion.

Fig. 1 provides a comparative analysis of place and route times

using Vivado for the designs without and with the constraints on

the MLCAD2023 benchmark. A 20% increase in place and route

time is observed on average for designs with the constraints, caused

by the increased difficulties in routing. The scarce candidate sites

to place the large cascaded macros and the increased cell density

in constrained regions collectively hinder the macro placer’s ability

to find an optimal routable solution. In response to the need for

improved macro placement solutions under design constraints, an

academic contest organized by MLCAD2023 committee and AMD

Corporation [6] focused on FPGA macro placement with routability

optimization and realistic design constraints.

In this paper, we propose a novel macro placer based on the

SimPL framework [23] that incorporates advanced techniques for

better routability optimization under the RPC and RC. It is worth

noting that these two constraints are not considered in the other

refined SimPL-based FPGA placers, such as RippleFPGA [9] and

Liquid [24]. In the global placement, we modify the pseudo nets in

the original framework to be macro size-aware and the cell spreading

to be guided by RC, to reduce the congestion level under RPC and

RC. In the legalization, we categorize the macros into different groups

and legalize them sequentially with look-ahead techniques, to ensure

a valid macro placement solution under the two complex constraints.

The contributions of the papers are summarized as follows:
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CLB

DSP

RAMB

IO

SwitchBox

Fig. 2: The layout of the Xilinx Ultrascale series board

Region 2

DSP_CASCADE_2 BRAM_CASCADE_2

Region 1

Fig. 3: Relative placement constraints and regional constraints

• We propose the macro size-aware pseudo nets and RC guided

spreading to enhance the routability in the global placement when

both the RPC and RC are considered.

• A multi-stage look-ahead legalization algorithm is proposed to

extend the progressive macro legalization to the scenarios with

intensive RPC and RC.

• We conduct comparative evaluations of our macro placer against

other solutions in both academic and commercial tools. Additionally,

ablation studies are performed to demonstrate the effectiveness of

the proposed techniques.

II. PRELIMINARY

In this section, we firstly introduce the architectures of the Ultrascale

series FPGAs that our macro placer targets and RPC and RC in

modern designs. Then we mathematically formulate the FPGA macro

placement problem.

A. FPGA Architecture

Our macro placer targets at the Xilinx Ultrascale series FPGAs [5]

with the column-wise structure shown in Fig. 2. This FPGA board

offers five common site types for flexible configuration: CLB, DSP,

BRAM, IO, and switchbox. Each CLB can accommodate several

LUTs and FFs. The sites in the same columns have the same types.

The switchboxes are used to interconnect different sites with the

prefabricated wires.

B. Design Constraints

Two categories of design constraints play a significant role in

modern FPGA-based design. The first constraint is RPC, which exists

in the advanced architectures like carry chains [22], systolic arrays [25]

and memory cascades [26] demanding specific relative placements. In

Fig. 3, the blocks in the dotted red rectangles indicate that the cells

in the cascaded DSPs and the cascaded BRAMs should be placed

adjacently, according to RPC. RC arises when back-end engineers

confine certain cells within predefined regions. Fig. 3 shows two

constrained regions with overlapping. Nodes lacking RC enjoy the

flexibility to be placed at any location on the FPGA.

C. Problem Formulation

The FPGA macro placement problem can be formulated as follows.

Let a hypergraph H = (V,E) represent the design where macros

are denoted as VM = {v1M , v2M , v3M , ..., vnM} and standard cells

RPC and RC

Region Constraints Aware Initial Placement

Global Placement for Macros

Quadratic Wirelength Minimization

Pin Density Aware Inflation and Spreading

Multi-stage Look Ahead Macro 
Legalization

Converge?

No

Macro Size Aware Pseudo Nets

Techniques

RC Guided Spreading

Netlist FPGA Device 
Information

Macro Placement Solution

Yes

Fig. 4: Overall flow of our macro placer

as VS = {v1S , v2S , v3S , ..., vkS}. Both the macros and standard cells

are movable in the design. The macros with the same RPC are

clustered into one cascaded macro, where the set of macros VM can

be converted to a smaller set VCM = {v1CM , v2CM , v3CM , ..., vmCM}
(n ≥ m). Several rectangular regions with the boundary denoted as

R = {(xl
r, x

u
r , y

l
r, y

u
r )}|R|

r=1 are pre-defined to constrain some of the

cells in them. The FPGA macro placer aims to determine the locations

of the macros VCM with the minimization of the routing congestion.

Additionally, the macro placement must ensure all resources are

overflow-free across all FPGA sites and adhere to RPC and RC.

III. METHODOLOGY

Fig. 4 illustrates the overall flow of our macro placement framework.

The framework is built upon the SimPL-based framework, with specific

modifications tailored to address design constraints and enhance overall

routability. Given the netlist, FPGA device information and the design

constraints, the macros are initially placed according to the RC. The

macro placer refines the macro locations by iterative global placement

and macro legalization. The global placement involves quadratic

wirelength minimization for all the connected cells, and the cell

inflation and spreading to reduce the pin density. Since there are

massive overlaps for macros after the global placement, multiple

legalization stages are implemented for various macro categories. Note

that the macro size-aware pseudo nets and the RC guided spreading are

two important techniques introduced in our macro placer to achieve

better routability under RPC and RC. In addition, the look-ahead

technique is proposed to guarantee a valid macro placement solution

during the progressive legalization under intensive constraints.

A. Regional Constraints Aware Initial Placement

In our macro placer, the initial placement of macros considers

the RC, thereby establishing a more favorable starting point for

global placement and easing macro legalization. For macros with

RC whose boundaries are denoted as (xl
r, x

u
r , y

l
r, y

u
r ), their locations

are randomly sampled from a uniform distribution within the specified

constrained regions:

x ∼ U(xl
r + σ, xu

r − σ)

y ∼ U(ylr + σ, yur − σ)
(1)

In Eq. (1), σ is the distance to the boundary of the region, and it takes

0.1 in our macro placer. For macros without any RC, the locations

are initialized to any location within the FPGA board.

B. Global Placement for Macros

Although the primary focus is on placing macros, getting the

distribution of standard cell locations is still crucial for achieving
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(a) With LUT-FF Cluster Guid-
ance

(b) Without LUT-FF Cluster
Guidance

Fig. 5: BRAM placement with and without the guidance from LUT-FF

Cluster

optimal macro placement. On one hand, plenty of indirect connections

exist between macros through a few standard cell cluster hops [27].

In Fig. 5, two BRAMs are connected via a single LUT-FF cluster.

The BRAMs are placed adjacently with a minimization of the

distance between them in Fig. 5(a). Without considering these indirect

connections, the BRAMs might be placed far apart, like what is shown

in Fig. 5(b). On the other hand, the standard cell clusters occupy a

substantial portion of the FPGA board. Therefore, both the macros

and the standard cells participate in the global placement in our macro

placer.

During the wirelength minimization stage in the previous SimPL-

based framework, pseudo nets connecting the cells and their location

in the last iteration are introduced to speed up the convergence of the

placement. In this process, the total quadratic wirelength of all the

nets and the weighted sum of the length for all the pseudo nets are

minimized.

min
x,y

∑
e∈E

We +
∑

ep∈EP

[wepWep ] (2)

We =
∑
i,j∈e

[wB2B
x,ij (xi − xj)

2 + wB2B
y,ij (yi − yj)

2] (3)

where Ep = {ep} is the set of pseudo nets and Wep is the quadratic

approximation of the pseudo net ep. (xi, yi) and (xj , yj) are the

coordinates of the i-th and j-th pin of the net e. wB2B
x,ij and wB2B

y,ij

are weights determined by the Bound2Bound net module [28]. In

the refined SimPL-based FPGA placer like RippleFPGA [9] and the

Liquid [24], the weight of the pseudo net increases as the placement

approaches convergence. It is calculated as:

wep,vi =
α

d(vi)
(4)

In Eq. (4), α represents a customizable coefficient, d(vi) denotes

the distance between the locations of cells in the current and last

placement iteration. Following the quadratic wirelength minimization

procedure, macros that share either a direct connection or an indirect

connection through a limited number of standard cell clusters are

adjusted to be in closer proximity.

The pin density is computed to gauge the utilization of routing

resources in the FPGA after wirelength minimization. The calculation

of the pin density follows the approach in [9]. Initially, the FPGA

board is divided into multiple bins, and the pin density within each

bin is determined by calculating the weighted sum of intersections

between the bin and the bounding boxes of all nets.

PinDensityi =
∑

m∈Ni

wm ·HPWLm

#bins covered by the net m
(5)

In Eq. (5), Ni represents the set of nets where the bounding boxes

overlap with the bin i. wm is the assigned weight proportional to

the number of pins located in the bin i of the net m. HPWLm

Fig. 6: The spreading directions for different macros with the

same regional constraint (The constrained region is inside the green

rectangle)

is the half perimeter wirelength of the net m, where HPWLm =
(maxj xj −minj xj) + (maxj yj −minj yj).

The cells are inflated according to the pin density of the bin, with

a higher pin density resulting in a greater inflation rate. The cells in

the bins with resource overflow caused by the inflation would relocate

to the bins without overflow. This relocation serves to decrease the

overall pin density across the FPGA board, while the wirelength

between the cells may enlarge. In the subsequent iterations, the cells

including macros would adjust their positions with the minimization

of the wirelength. This iterative process results in an improved macro

placement solution, optimizing both wirelength and pin density.

1) Handling the Relative Placement Constraints: RPC imposes

restrictions on the relative positions of the macros and it is the common

practice to amalgamate the macros with the same RPC into a large

cascaded macro in the related works. However, these cascaded macros

exhibit complicated interconnections with the other cells, and even a

slight movement can result in subtle changes in wirelength. Frequent

adjustments over a larger range can lead to unstable convergence

in global placement. Moreover, the candidate sites for placing large

cascaded macros are scarce in the FPGA board, particularly when

some cascaded macros span half of the columns and the RC are

taken into consideration simultaneously. Therefore, the sizes of the

cascaded macros should be considered in the global placement. Here

we modify the weights of the pseudo nets connecting macros to be

highly related to their sizes as:

wep,v
i
CM

=
α

d(viCM )
× p(viCM ) (6)

where p(viCM ) denotes the number of the pins of the macros.

Larger cascaded macros with more pins are assigned the pseudo

nets with larger weights and move relatively slower in the wirelength

minimization.

2) Handling the Regional Constraints: The RC are considered in

the stage of cell inflation and spreading. The cells with the RC are

directed with the calculated distance to the constrained regions before

and after the spreading. Let xl
r and xu

r be the x-coordinates of the left

and the right boundary of the constrained region, then the horizontal

distance dx from the location x to the constrained region is calculated

as:

dx =

⎧⎨
⎩

x− xu
r , x > xu

r

xl
r − x, x < xl

r

0, xl
r ≤ x ≤ xu

r

(7)

The vertical distance, denoted as dy , is also calculated in a manner

similar to Eq. (7). The spreading of the cells with RC ensures that the

horizontal distance dx and the vertical distance dy do not increase.

Illustrated in Fig. 6, the cells within and outside the constrained

regions have different directional selections of spreading.
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(a) Failure 1 (b) Failure 2

Fig. 7: Two failed macro legalization with the progressive minimum

cost bipartite matching

C. Multi-stage Look Ahead Macro Legalization

The introduction of RPC and RC poses notable complexities in the

macro legalization. RPC leads to the formation of excessively large

cascaded macros with limited available sites to place. Meanwhile, the

RC restricts the freedom for the macros to pursue a solution with

less HPWL increase. Minimum cost bipartite matching is widely used

in macro legalization, where one set of cells are macros, and the

other set of cells are the candidate sites for each macro. The directed

edges connect the macros and the candidate sites with the weight

as the displacement after the legalization. Progressive legalization

is proposed in [20] to speed up the traditional bipartite matching

algorithms in the designs with thousands of macros and candidate sites.

This approach involves iterative bipartite matching with a gradually

increasing displacement threshold. However, in the cases of high site

utilization and numerous constraints, progressive legalization may

yield invalid results. Fig. 7 demonstrates two failures in progressive

macro legalization. Fig. 7(a) shows a failure that the cascaded macro

with two macros cannot find candidate sites for placement after two

single macros are placed. Fig. 7(b) illustrates another failed case that

a macro with the RC cannot be legalized within the region because

all the candidate sites in the region are occupied by the other macros.

In order to eliminate the legalization failures caused by the design

constraints, we categorize the macros into three distinct groups and

perform sequential legalization on these categories. Alg. 1 outlines

the procedures in the multi-stage legalization. The macros with RPC

are legalized first, given the scarcity of candidate sites for placing

such macros. Subsequently, the macros with the RC and those without

the RC are legalized respectively. The macros without RPC and RC

have the highest degree of freedom, as any site on the FPGA board

is considered valid for their placement. These three categories of

macros are placed with the progressive legalization algorithm in Alg.

2. However, the previously placed macros have the probability of

occupying the sites in the constrained region, making it difficult for

the macros with the RC to find the candidate sites in the same region.

To solve this problem, some "look ahead" techniques are added to the

progressive legalization. Specifically, the number of the sites occupied

by the macros with the RC would be calculated initially (Line 1 in

Alg. 1). This calculation ensures that the first-placed cascaded macros

would not select sites in regions with resource overflow. In addition,

the selection of candidate sites (Line 5 in Alg. 2) and the update of

macro locations (Line 7-11 in Alg. 2) would also consider whether

the constrained regions are resource overflow after placing the macro.

Algorithm 1: Multi-stage Look Ahead Macro Legalization

Input: List of the macros with RPC Irpc, list of the macros

with RC Ireg , list of the macros without any constraint

Isim, the sites S on the FPGA board, the set of RC R,

the locations after the global placement for all the

macros Lgp = {xgp
i , ygp

i }Mi=1

Output: The locations of the macros after the legalization

Lleg = {xleg
i , yleg

i }Mi=1

1 PreOccupyConstrainedRegions(R)

2 ProgressiveLookaheadLegalize(Irpc, Lgp, S, R)

3 ProgressiveLookaheadLegalize(Ireg , Lgp, S, R)

4 ProgressiveLookaheadLegalize(Isim, Lgp, S, R)

Algorithm 2: ProgressiveLookaheadLegalize

Input: The set of the macros to be legalized I , the sites S on

the FPGA board, the locations after the global

placement for macros Lgp, the set of RC R, the initial

threshold for the displacement θinit, the incremental of

the displacement threshold Δθ
Output: The locations of all the macros in I after the

legalization LI
leg

1 Macro2CandidateSites = φ
2 θ = θinit

3 while there are macros in I do
4 Macro2CandidateSites = FindCandidateSites(I , S, θ, Lgp)

5 RemoveSitesWithRegionsOverflow(Macro2CandidateSites,

I , S, R)

6 Solve the Bipartite Matching

I → Macro2CandidateSites and obtain the set of

macro-site pairs Macro2Site

7 for each pair (macro, site) in Macro2Site do
8 if site does not cause resource overflow in R then
9 UpdateMacroLocation(macro, site, LI

leg)

10 UpdateRegionResourceUsage(site, R)

11 I .remove(macro)

12 θ = θ + Δθ

IV. EXPERIMENT

A. Experiment Setups

We assess the performance of our proposed macro placer on the

MLCAD 2023 benchmark1, which is one of the largest benchmarks

in the FPGA and EDA society, with 140 designs in total. It is targeted

at the Xilinx Ultrascale+ xcvu3p FPGA board. Because of the page

limit, we select 70 representative designs containing both the RPC and

RC for evaluation. The selected designs exhibit a notable scale, with

node counts ranging from 560k to 720k and net counts between 600k

and 800k. Distinguishing itself from the ISPD 2016 [4] and ISPD

2017 [29] benchmarks, the MLCAD 2023 benchmark is characterized

by large quantity and a high site utilization for the macros. The

utilization of the sites placing macros rises from 50% to 85%. In

addition, the benchmark contains plenty of realistic constraints in

modern designs. In the selected designs, the percentage of the macros

following RPC varies from 3% to 12%. The number of macros with

the same RPC ranges from 2 to 60. The number of the constrained

1https://www.kaggle.com/datasets/ismailbustany/updated-mlcad-2023-
contest-benchmark
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Tab. I: Comparison of the routing scores after integrating different macro placers

Design
Vivado MP Ours

Design
Vivado MP Ours

si sd st si sd st si sd st si sd st si sd st si sd st
Design_2 1 5 6 1 6 7 1 5 6 Design_90 1 7 8 2 7 9 2 8 10
Design_5 1 6 7 1 5 6 1 5 6 Design_92 2 7 9 1 7 8 1 6 7
Design_7 1 6 7 5 6 11 1 6 7 Design_95 1 7 8 1 6 7 1 6 7
Design_10 1 6 7 1 9 10 1 8 9 Design_97 1 7 8 3 8 11 1 6 7
Design_12 1 6 7 1 5 6 1 6 7 Design_100 5 8 13 1 6 7 1 7 8
Design_15 1 6 7 1 6 7 1 6 7 Design_102 6 9 15 1 7 8 1 7 8
Design_17 1 6 7 6 8 14 5 7 12 Design_105 1 7 8 1 6 7 1 7 8
Design_20 1 6 7 2 7 9 1 9 10 Design_107 3 13 16 1 10 11 2 8 10
Design_22 1 5 6 1 6 7 1 6 7 Design_110 5 11 16 10 10 20 1 9 10
Design_25 1 6 7 1 6 7 1 6 7 Design_112 1 9 10 1 8 9 1 8 9
Design_27 1 7 8 1 7 8 1 7 8 Design_115 1 8 9 1 6 7 1 6 7
Design_30 1 6 7 2 6 8 1 6 7 Design_117 2 15 17 6 10 16 5 8 13
Design_32 1 6 7 1 7 8 1 6 7 Design_120 22 23 45 9 15 24 1 8 9
Design_35 1 5 6 1 7 8 1 6 7 Design_122 1 6 7 1 6 7 1 6 7
Design_37 1 9 10 10 11 21 1 10 11 Design_125 1 6 7 1 6 7 1 6 7
Design_40 1 6 7 1 6 7 5 8 13 Design_127 1 7 8 3 8 11 1 7 8
Design_42 1 6 7 1 7 8 1 6 7 Design_130 1 7 8 1 8 9 1 7 8
Design_45 1 7 8 1 6 7 1 6 7 Design_132 1 6 7 1 8 9 1 6 7
Design_47 2 8 10 2 9 11 1 8 9 Design_135 1 9 10 1 6 7 1 7 8
Design_50 1 7 8 1 7 8 1 7 8 Design_137 17 9 26 5 8 13 16 8 24
Design_52 1 6 7 1 7 8 1 6 7 Design_140 16 13 29 14 13 27 9 9 18
Design_55 1 9 10 1 5 6 1 6 7 Design_142 1 7 8 1 7 8 1 5 6
Design_57 4 8 12 3 8 11 6 8 14 Design_145 1 8 9 1 8 9 1 6 7
Design_60 1 14 15 1 7 8 1 8 9 Design_147 3 10 13 2 8 10 5 7 12
Design_62 1 6 7 1 6 7 1 7 8 Design_150 2 10 12 2 9 11 1 8 9
Design_65 1 6 7 1 6 7 1 7 8 Design_152 1 7 8 1 8 9 1 7 8
Design_67 2 6 8 2 8 10 1 6 7 Design_155 1 6 7 1 7 8 1 6 7
Design_70 1 6 7 6 8 14 1 9 10 Design_160 3 8 11 14 11 25 11 10 21
Design_72 1 6 7 1 6 7 1 6 7 Design_162 2 9 11 1 7 8 1 6 7
Design_75 1 8 9 1 7 8 1 6 7 Design_165 1 8 9 1 7 8 1 8 9
Design_77 1 8 9 1 7 8 1 8 9 Design_167 6 18 24 2 11 13 19 12 31
Design_80 2 8 10 2 7 9 2 6 8 Design_170 17 37 54 11 12 23 19 23 42
Design_82 1 6 7 1 8 9 1 6 7 Design_172 1 8 9 1 8 9 2 7 9
Design_85 1 5 6 1 6 7 1 5 6 Design_175 1 9 10 1 7 8 1 10 11
Design_87 7 9 16 2 8 10 1 7 8 Design_180 7 27 34 19 36 55 6 13 19

Geomean 1.57 7.83 9.70 1.68 7.51 9.53 1.45 7.08 8.88
Ratio 1.0 1.0 1.0 1.07 0.96 0.98 0.92 0.9 0.92

regions varies from 2 to 22, with the percentage of cells subject

to RC averaging at 24% and peaking at 42%. Our code has been

open-sourced in https://github.com/tomqingo/CUMPLE_MLCAD.

In the evaluation flow, the FPGA macro placer would read the

netlists and determine the positions for each macro. Subsequently,

the standard cells are placed and the overall design is routed using

Vivado ML 2021.1. The routing congestion report is generated in the

end. Note that all the placements are in non-timing-driven mode. The

experiments are all conducted on the server with Intel(R) Xeon(R)

Platinum 8268 CPU. The number of threads used is 8.

B. Comparison with Academic and Commercial Tools

1) Routing Scores: We adopt the routing score proposed in [6] as

a quantitative metric to assess the congestion level and the routability

of the macro placement solution. The routing score consists of two

components: the initial routing score and the detailed routing score.

st = si + sd (8)

The initial routing score si is derived from the interconnect

congestion report provided by Vivado. This report encompasses the

utilization of routing resources from the North, South, East, and

West directions across the interconnect tile grid. Routing congestion

is identified when resource utilization exceeds 0.9. Based on the

interconnect wire length, congestion is further categorized into Global,

Short, and Long Congestion. The congestion level ranges from 1 to

8. Since the congestion level under 3 has little degradation on the

quality of routing, the initial routing score is the summation of the

Global and Short congestion levels above 3 for all the directions,

si =1 +
4∑

j=1

[max(0, shortj − 3)2]

+max(0, globalj − 3)2]

(9)

where i = 1 to 4 stands for four directions. The detailed routing score

sd is calculated as the number of iterations for eliminating the nodes

with overlap during the rip-up and reroute. Larger routing scores

indicate larger congestion levels and more difficulties in fulfilling the

FPGA routing.

We compare our macro placer with the default macro placer in

Vivado ML 2021.1 and the DreamplaceFPGA-MP [30], which is the

first place in the MLCAD2023 FPGA Macro-Placement Contest. Tab. I

shows the routing scores for different designs and macro placers. "MP"

denotes DreamplaceFPGA-MP. All the macro placement solutions

satisfy RPC and RC, checked by the placement validity checker in

Vivado. We calculate the geometry mean for the routing scores of all

the designs. Compared with the default macro placer in Vivado, our

placer could achieve 8% reduction in the initial routing score, 10%

reduction in the detailed routing score, and 8% reduction in the total

routing score on average. When compared with DreamplaceFPGA-MP,

our placer could achieve 14% decrease in the initial routing score,

6% reduction in the detailed routing score, and 6% reduction in the

total routing score on average.

It is also worth noticing that for some designs like Design_140

and Design_180, our macro placer can reduce the routing scores by

nearly 40%. Fig. 8 demonstrates different macro placement solutions

and the corresponding interconnect congestion levels above 3 in

Design_140. The visualization shows the congestion level is lower

and the congested area is smaller with our macro placement solution

in this design. The comparative results above show that our macro

placer could have better routability optimization for the designs with

intensive constraints.

2) Place and Route Time: We also analyze the total place and route

time after substituting the default macro in Vivado ML 2021.1 with our

macro placer. The place time includes the time for macro placement

and standard cell placement. Fig. 9 shows that after integrating our
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(a) Vivado, s = 29 (b) MP, s = 27 (c) Ours, s = 18

Fig. 8: The visualization of different macro placement solutions and the interconnect congestion levels above 3 for Design_140 (Arrays in

deep blue represent the placed macros, arrays in light blue represent the placed CLBs, and area in orange represents the congested region)

Fig. 9: Place and route time after integrating our macro placer in

Vivado

macro placer, the place and route time in Vivado could be reduced

by 3.5% on average and the maximum drop reaches 43%. Although

there are some overheads introduced by macro placement, the routing

stage would be accelerated because of better routability.

C. Ablation Study

1) Techniques in Global Placement: More discussions are con-

ducted on the techniques for adapting to the RPC and the RC. The

two techniques used for achieving better routability within the design

constraints are the macro size aware pseudo nets and the RC guided

spreading. The former aims to reduce the frequent adjustments of the

large cascaded macros, and the latter aims to ensure the macros with

the RC would not spread out of the constrained regions. For evaluating

these two techniques, we propose two versions by removing these

two techniques respectively:

• V1 - the spreading does not consider decreasing the distance to the

constrained regions.

• V2 - the weights of the pseudo nets connecting the macros are

calculated as Eq. (4)

Fig. 10 shows the total routing scores for the macro placement

solutions generated by V1, V2 and our macro placer. After integrating

all of the two techniques, our macro placer performs best on most of

the designs with fewer peaks, as shown in Fig. 10. We also calculate

the geometry mean of the total routing scores. The geometric mean

of the routing scores for V1, V2 and our macro placer are 9.80,

10.09 and 8.88 respectively. The introduction of the macro size aware

pseudo nets and the RC guided spreading can bring the reductions in

total routing scores by 12% and 9% respectively.

2) Techniques in Macro Legalization: We also evaluate the look-

ahead techniques in multi-stage macro legalization. For comparison,

we remove all the look-ahead techniques proposed in Section III-C,

including Line 1 in Alg. 1 and Line 5, 8, 10 in Alg. 2. We rerun

Fig. 10: Comparison of the total routing scores after introducing the

techniques to align with design constraints in global placement

the versions with and without the look-ahead techniques on the

selected designs. The time limit for the macro placement is set 10

minutes, with any macro placement that cannot finish in 10 minutes

regarded as unsuccessful. The results show that the version with the

look-ahead techniques succeeds in the placement for all 70 designs,

while the version without the techniques fails on 8 designs. The

unsuccessful macro placements stem from the unsuccessful bipartite

graph construction in the progressive legalization. Some macros with

RC cannot find the candidate sites that are already occupied by the

other placed macros.

V. CONCLUSION

We propose a macro placer tailored for the Xilinx Ultrascale series

FPGA boards addressing both routability optimization and realistic

design constraints. It could be integrated into the Vivado environment

with the introduction of the macro size aware pseudo nets and RC

guided spreading in the global placement, and the multi-stage look

ahead legalization. The experiment results on MLCAD2023 benchmark

demonstrate that our macro placer can reduce congestion levels and

facilitate routing, compared with the default macro placer in the

Vivado and DreamplaceFPGA-MP. Additionally, the place and route

time could be reduced by 3.5% on average and up to 43% after our

macro placer is integrated in the Vivado. Ablation Study confirms the

effectiveness of our techniques in achieving superior routability under

RPC and RC.
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