
Dynamic Multi-FPGA Prototyping Platforms with Simultaneous
Networking, Placement and Routing

Xinshi Zang

The Chinese University of Hong Kong

xszang@cse.cuhk.edu.hk

Qin Luo

The Chinese University of Hong Kong

qluo22@cse.cuhk.edu.hk

Zhongwei Shao

S2C Limited, China

zhongweis@s2ceda.com

Jifeng Zhang

S2C Limited, China

zyeez@s2ceda.com

Evangeline F.Y. Young

The Chinese University of Hong Kong

fyyoung@cse.cuhk.edu.hk

Martin D.F. Wong

Hong Kong Baptist University

mdfwong@hkbu.edu.hk

ABSTRACT
Large-scale multi-FPGA prototyping platforms play an indispens-

able role in the functional verification of complex IC designs. The

process of compiling circuit designs typically entails tasks such as

partitioning, global placement and routing using a fixedmulti-FPGA

network. However, different circuit designs often exhibit varying

inter-FPGA communication requirements after compilation. Ne-

glecting this distinction, the use of fixed multi-FPGA networks may

impede the performance enhancement of circuit verification. In this

study, we investigate dynamic networking for multi-FPGA plat-

forms and propose a comprehensive framework, which integrates

simultaneous networking and system-level placement and routing.

Based on theoretical analysis, we formulate this dynamic network-

ing problem as an Integer Linear Programming (ILP) problem. Addi-

tionally, we introduce two innovative techniques, namely two-level

ILP optimization and edge grouping, to expedite the ILP-solving

process. Compared to the baselines on Titan23 and ICEEC22 bench-

marks, our method achieves remarkable 11% and 47% improvements

in system frequency respectively.

ACM Reference Format:
Xinshi Zang, Qin Luo, Zhongwei Shao, Jifeng Zhang, Evangeline F.Y. Young,

and Martin D.F. Wong. 2024. Dynamic Multi-FPGA Prototyping Platforms

with Simultaneous Networking, Placement and Routing . In Great Lakes
Symposium on VLSI 2024 (GLSVLSI ’24), June 12–14, 2024, Clearwater, FL, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3649476.3658713

1 INTRODUCTION

Multi-FPGA prototyping platforms (MFP) have been widely ap-

plied in the industry for the functional verification of circuits. No-

tably, according to [8], verification time consumes a substantial

portion, ranging from 60% to 80%, of the entire IC development

The work described in this paper was partially supported by a grant from the Research

Grants Council of the Hong Kong Special Administrative Region, China (Project No.

CUHK14210923).

This work is licensed under a Creative Commons Attribution International

4.0 License.

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0605-9/24/06

https://doi.org/10.1145/3649476.3658713

cycle. Consequently, enhancing the performance of MFP assumes

paramount importance for expediting IC development endeavors.

A conventional flow for compiling an RTL design into multi-

FPGA platforms encompasses a series of stages, including synthesis,

partitioning, system-level placement and routing, and intra-FPGA
placement and routing [3]. After logic synthesis, a large circuit

netlist is partitioned into several sub-circuits each of which is then

placed on a separate FPGA. Subsequently, system-level routing is
performed to route cut nets through the MFP network. Inter-FPGA

nets are then assigned with a time-division multiplexing (TDM)

ratio on physical wires. Finally, each sub-netlist is placed and routed

within one FPGA.

Cable

Signals

Figure 1: Customizable multi-FPGA platforms.

Based on the inter-FPGA connections, Tang et al. [16] classified

multi-FPGA platforms into three categories, including hardwired

off-the-shelf [15], cabling [2, 11], and custom [10] platforms. The

hardwired off-the-shelf MFP is a ready-made multi-FPGA board,

where all the FPGAs are connected by fixed printed wires. In con-

trast, the cabling and custom MFP will tailor the inter-FPGA cables

or wires, which we call networking in this paper, for a specific

design. For instance, Fig. 1 shows a cabling MFP where the number

of external cables of the FPGA in the red circle is adjusted according

to the inter-FPGA signals.

As not all pairs of FPGA have direct connections in large-scale

MFP, the cut nets may need to be routed through intermediate FP-

GAs. Moreover, because the cut nets usually outnumber the avail-

able inter-FPGA physical wires, the Time-Division-Multiplexing

(TDM) technique [3] is widely adopted to send inter-FPGA signals

in a pipeline way. The system frequency of MFP is known to be

related to the multiplexing ratio of the cut size (cut-net number)

to the wire count between connected FPGAs and the routing hop

(intermediate FPGA count) [1, 6, 17]. Because the inter-FPGA wire

count is constrained in MFP, managing well the wire distribution

and the cut distribution to minimize the multiplexing ratio and

routing hop is crucial in MFP.

433

https://doi.org/10.1145/3649476.3658713
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3649476.3658713
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649476.3658713&domain=pdf&date_stamp=2024-06-12

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Xinshi Zang, Qin Luo, Zhongwei Shao, Jifeng Zhang, Evangeline F.Y. Young, and Martin D.F. Wong

In [16], Tang et al. proposed an automatic flow to optimize the

wire distribution of MFP based on the pre-computed routing so-

lution. Although it has achieved promising performance improve-

ments, their flow assumes that all the FPGAs in MFP can be fully

connected for the system-level routing, which may not hold in

practice. In large-scale MFP, the FPGA connections can be con-

strained by the IO resource and distance [8]. Unaware of these

constraints, there may not exist a feasible networking solution for

the pre-computed routing solution.

Essentially, the problem of MFP networking and system-level
routing is a chicken-and-egg problem. The routing task relies on

the routing resources in the MFP architecture to distribute the cut

nets, while the networking task requires the cut distribution to

adjust the wire distribution. To optimize the system performance

of MFP, it is essential to close the gap between these two tasks.

To this end, we propose a simultaneous networking and system-
level placement and routing framework for dynamic multi-FPGA

prototyping platforms. The main contributions of this work are

summarized as follows:

• We transform the original wire-constrained non-linear opti-

mization problem into a linear wire-minimization problem.

Given limited wire resources in MFP, the original network-

ing, placement, and routing problem is a difficult non-linear

optimization problem with complex constraints. However,

we innovatively transform the hard wire constraints into

an objective to minimize, which makes this problem linear

and easy to solve. Furthermore, we theoretically prove the

equivalence of the transformation.

• We propose a novel Integer Linear Programming (ILP) for-

mulation for the wire-minimization problem to optimize

networking and system-level placement and routing simulta-

neously.

• We propose two techniques, namely two-level ILP optimiza-

tion and edge grouping, to prune the solution space of the

ILP problem and make it efficiently solvable.

• We conduct extensive experiments on the Tian23 and ICEEC22

benchmarks, demonstrating that our method achieves 11%

and 47% improvements, respectively, in system frequency

compared to the baselines.

2 RELATEDWORKS
Given a fixed MFP, to reduce the inter-FPGA communication delay,

several methodologies have been proposed to improve the compi-

lation flow [5, 9, 12, 13, 18]. Mak et al. [13] proposed the temporal

logic replication to reduce the number of inter-FPGA signals. Liou

et al. [12] proposed timing-driven partitioning by adjusting the

weight of critical nets and iterative board-level placement by swap-

ping FPGAs. Zheng et al. [18] proposed a TDM-aware system-level

routing strategy to optimize both wirelength and TDM ratio. Chen

et al. [5] proposed simultaneous partitioning and routing, which

integrates the guided routing topologies in the multi-level partition-

ing framework. Inagi et al. [9] adopted ILP-based pin assignment

to select signals to be time-multiplexed. Although considerable

improvements have been achieved, these works can be impaired

by inefficient networking [16].

The design of the networking of MFP is a time-consuming pro-

cess and usually relies on the FPGA expertise of the engineers. To

further improve the system frequency, recent works have delved

into the problem of dynamic networking for MFP [1, 6, 16]. As

discussed in Sec. 1, Tang et al. [16] proposed the first dynamic net-

working flow for MFP with simple networking constraints. Farooq

et al. [6] experimentally studied different MFP architectures and

concluded that the architectures with inter-FPGA wires closely

matching the cut net requirements achieve better frequency re-

sults. The ICEEC 2022 contest [1] posed an industrial dynamic

MFP networking problem with complex constraints, encouraging

customization of MFP architectures for each circuit design. In this

work, we focus on a dynamic MFP generation flow that supports

practical networking constraints and tailors the wire distribution

for better inter-FPGA communication delay.

3 PRELIMINARIES
The key terms utilized in this work are explained in Tab. 1.

Table 1: Terminology. The upper parts are abbreviated names,
numbers or sets that can be pre-computed and the lower parts
are variables in the ILP formulations.

Term Description

𝐺 , 𝐺 Partition graph and FPGA graph.

𝑛𝑖 , 𝑒𝑘 The 𝑖th 𝐺 node and 𝑘th 𝐺 edge.

𝑛̂ 𝑗 , 𝑒𝑙 The 𝑗th 𝐺 node and 𝑙th 𝐺 edge.

𝑝𝑜 The 𝑜th routing path in 𝐺 .

𝛼, 𝛽 The number of nodes and edges in 𝐺 .

𝛼, ˆ𝛽 The number of nodes and edges in 𝐺 .

𝛾 The number of routing paths in 𝐺 .

𝛿𝑘 The weight of 𝑒𝑘 .

𝜂𝑜 The routing hop count (number of intermediate 𝐺 nodes) of 𝑝𝑜 .

𝜃𝑜𝑙 Whether 𝑝𝑜 has 𝑒𝑙 (1: yes, 0: no).

𝜔 The maximum number of wires for each FPGA.

𝜇 The maximum number of connected FPGAs for each FPGA.

𝜈 The maximum Manhattan distance for any connected FPGAs.

𝐸 𝑗 The set of 𝐺 edges connected to 𝑛̂ 𝑗 .

𝑃 𝑗1 𝑗2 The set of routing paths between 𝑛̂ 𝑗1 and 𝑛̂ 𝑗2 .

𝑃𝑘 The set of candidate routing paths in 𝐺 for 𝑒𝑘 .

𝑤𝑙 The wire number of 𝑒𝑙 .

𝑣𝑙 Whether 𝑒𝑙 exists (𝑤𝑙 > 0) (1: yes, 0: no).

𝑎𝑖 𝑗 Whether 𝑛𝑖 is assigned to 𝑛̂ 𝑗 (1: yes, 0: no).

𝑡𝑜𝑘 Whether 𝑝𝑜 is used by 𝑒𝑘 (1: yes, 0: no).

𝑐𝑙 The cut size, i.e., the total weight of 𝐺 edges routed on 𝑒𝑙 .

𝑟∗ The maximum ratio of cut to wire of the multi-FPGA system.

ℎ∗ The maximum routing hop of the multi-FPGA system.

3.1 MFP Networks
Three typical MFP networks, namely 4-way, 8-way, and 1-hop [7],

are illustrated in Fig 2. The 8-way and 1-hop networks provide twice

the number of neighboring FPGAs compared to the 4-way network.

In these networks, the IO pins of each FPGA are typically evenly

distributed among the connected FPGAs. As a result, the 4-way

network will have twice the number of wires between connected

FPGAs compared to the 8-way and 1-hop networks.

3.2 MFP Frequency Evaluation
Compared to intra-FPGA communication, inter-FPGA communica-

tion incurs significantly higher delays, which directly impact the

system clock frequency. As illustrated in Fig 3, the communication

delay using TDM in a pipeline way mainly consists of the multi-

plexing delay (𝑇𝑚𝑢𝑥), routing hop delay (𝑇ℎ𝑜𝑝), and other constant

434

Dynamic Multi-FPGA Prototyping Platforms with Simultaneous Networking, Placement and Routing GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

N

(a) 4-way

N/2

(b) 8-way

N/2

(c) 1-hop

Figure 2: Typical networks of multi-FPGA platforms.

D Q
FF

D Q
FF

MUX

FPGA0 FPGA1

Data

if_clk if_clk

MUX

FPGA2

Data

D Q
FF

if_clk

𝑇𝑚𝑢𝑥 𝑇ℎ𝑜𝑝

Figure 3: Timing analysis in MFP with TDM and one hop.

delays like flip flop delay. For simplicity, we estimate the system

frequency using Eq. (1) in this work following [1, 6, 17], where 𝑟∗

represents the maximum multiplexing ratio of signals to physical

wires between each connected pair of FPGAs, and ℎ∗ denotes the
maximum number of routing hops for all inter-FPGA signals. The

inter-FPGA clock frequency, 𝑖 𝑓 _𝑐𝑙𝑘 , is set to 100MHz in this study.

𝑓 𝑟𝑒𝑞 =
𝑖 𝑓 _𝑐𝑙𝑘

𝑇𝑚𝑢𝑥 +𝑇ℎ𝑜𝑝
=

𝑖 𝑓 _𝑐𝑙𝑘

𝑟 ∗ + ℎ∗ (1)

3.3 Problem Formulation
In this work, we focus on the MFP networking and system-level

placement and routing (NPR) problem. The circuit partitioning is

assumed to be completed and regarded as input. The FPGA in MFP

is assumed to be arranged in a 2D mesh and has a coordinate for

distinction. We represent an MFP as an FPGA graph (𝐺) where the

node and edge represent the FPGA and the direct connection. The

task of networking is then to determine whether an edge exists

between two nodes (𝑣𝑙) and the wire count on the existing edge

(𝑤𝑙). Let 𝛼 and 𝐸 𝑗 be the node number and the edge set of the FPGA

node in 𝐺 respectively.

There are three common constraints for MFP networking. For

each FPGA, the maximum number of wires (𝜔) and connected

FPGAs (𝜇) need to be honored due to the FPGA IO constraints.

Moreover, for each pair of connected FPGA, the maximum distance

(𝜈) constraint is also specified because of the length limitation of

wires. In summary, the objective of the NPR problem is to opti-

mize the system frequency defined in Eq. (1) while satisfying the

following constraints:

(1) Each circuit partition must be assigned to one FPGA and

Each FPGA can only accommodate one circuit partition;

(2) Each cut net must be routed on inter-FPGA wires;

(3) The number of wires on each FPGA should not exceed 𝜔 ,

i.e.,

∑
𝑙∈𝐸 𝑗

𝑤𝑙 ≤ 𝜔 , ∀𝑗 ∈ [1, 𝛼];
(4) The number of FPGAs connected to each FPGA should not

exceed 𝜇, i.e.,
∑
𝑙∈𝐸 𝑗

𝑣𝑙 ≤ 𝜇, ∀𝑗 ∈ [1, 𝛼];
To further illustrate the NPR problem, an example is provided

in Fig. 4. There are four circuit partitions and four cut nets with

different weights. Assume the networking constraint ⟨𝜔 , 𝜇, 𝜈⟩ is ⟨8,

D

C

A

B

10
4

4
2

5

3

5

NPRNPR

FPGA

Partition

x

yy

Cut net,

Net weight: x

FPGA wire,

Wire count: y4 2

2

4

10
A

B C

D

Figure 4: An example of the NPR problem.

2, 1⟩. One optimal NPR solution is shown on the right, with 𝑟∗ and
ℎ∗ being 2 (

10

5
= 4+2

3
) and 1 for the yellow net, respectively.

4 METHODOLOGY
To optimize the frequency of multi-FPGA platforms, we propose

a novel methodology that simultaneously addresses the network-

ing and system-level placement and routing problem (NPR). The

framework, outlined in Fig. 5, consists of three stages. In the initial

stage, we construct the partition graph and the FPGA graph based

on the input circuit partitioning solution. Next, we transform the

original NPR problem to an Integer Linear Programming problem.

To ensure the solvability of the ILP problem in a reasonable amount

of time, we introduce a two-level ILP optimization framework along

with an edge grouping technique for the partition graph. Finally,

we construct a small-scale quadratic program (QP) to legalize the

wire solution.

Circuit partitions and network constraintsCircuit partitions and network constraints

Networking, placement, and routing solutionsNetworking, placement, and routing solutions

QP-based wire legalizationPostprocessing QP-based wire legalizationPostprocessing

Partition graph and FPGA graph constructionPreprocessing Partition graph and FPGA graph constructionPreprocessing

Problem transformation

ILP formulation (two-level, edge grouping)

Simultaneous

networking,

placement and

routing

Problem transformation

ILP formulation (two-level, edge grouping)

Simultaneous

networking,

placement and

routing

Figure 5: Main flow.

4.1 Partitioning Graph (𝐺) and FPGA Graph (𝐺)
With the input circuit partitions, we can obtain a partition hyper-

graph where nodes represent partitions and hyperedges represent

cut nets. To construct the general partitioning graph (𝐺), we ex-

pand each hyperedge to 𝑛 − 1 source-to-sink edges, where 𝑛 is the

number of partitions connected by the hyperedge. We then merge

edges between the same pair of partitions into a single edge with

a weight equal to the total weight of all the merged edges. The

total node number and edge number of the 𝐺 are then denoted

as 𝛼 and 𝛽 in the following. This transformation is illustrated in

Fig. 6a and 6b, where a partition hypergraph (PHG) with four hy-

peredges is converted into a 𝐺 with five edges. The purpose of this

transformation is to ensure that the maximum routing hop count

of the expanded edges is equal to that of the original hyperedge in

the subsequent routing stage. However, this transformation may

introduce inaccuracies in calculating the cut size. We will address

this issue in the post-processing stage in Sec. 4.6.

435

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Xinshi Zang, Qin Luo, Zhongwei Shao, Jifeng Zhang, Evangeline F.Y. Young, and Martin D.F. Wong

Furthermore, we will construct a potential FPGA graph (𝐺), to de-

fine the solution space for the networking, placement, and routing.

Given the𝐺 and𝐺 , the NPR problem is then converted to determine

(1) which 𝐺 node to assign a 𝐺 node to; (2) which 𝐺 edges to route

a 𝐺 edge on; and (3) how many wires to allocate to a 𝐺 edge. To

provide efficient solution space, the 𝐺 shape is determined as a

rectangle with an aspect ratio within [1
2
, 1] and the𝐺 node number

(𝛼) also need be not less than the 𝐺 node number (𝛼). To meet the

distance constraint, an edge can exist between any pair of 𝐺 nodes

if their distance does not exceed 𝜈 . As shown in Fig. 6c, considering

the 𝐺 in Fig. 6b and with a maximum distance constraint of 𝜈 = 2,

we determine that 𝛼 = 6 and the𝐺 has a shape of 3×2. These dashed
lines represent potential edges. We will decide which FPGAs in the

𝐺 and which edges (connections) between the FPGAs will be used

at the end. Once the 𝐺 is determined, we will find all the shortest

paths between every pair of𝐺 nodes. These shortest paths will be

utilized as candidate routing paths in the subsequent routing stage.

The total number of routing paths (𝛾) in 𝐺 can be represented as

1

2
∗∑ ˆ𝛽

𝑗1=1

∑ ˆ𝛽

𝑗2=1
|𝑃 𝑗1 𝑗2 |, where 𝑃 𝑗1 𝑗2 represents the path set between

𝐺 nodes 𝑛̂ 𝑗1 and 𝑛̂ 𝑗2 .

𝑤1

𝑤2
𝑤3

𝑤4

(a) PHG

𝑤1
𝑤2
𝑤2+𝑤3

𝑤4 𝑤1

(b)𝐺 (c) 𝐺̂

Figure 6: Examples of the construction of 𝐺 and 𝐺 .

4.2 Problem Transformation
As summarized in Tab. 1, there are four main variables to be de-

termined, including 𝑤𝑙 , 𝑣𝑙 , 𝑡𝑜𝑘 , 𝑎𝑖 𝑗 , in the NPR problem. The wire

count variable (𝑤𝑙) and edge status variable (𝑣𝑙) are used to deter-

mine the networking solution. The routing choice variable (𝑡𝑜𝑘)

and the related mapping variable (𝑎𝑖 𝑗) are used to describe the

routing solution and the corresponding partition mapping solution.

The NPR problem is then converted into determining the variables

⟨𝑤𝑙 , 𝑣𝑙 , 𝑡𝑜𝑘 , 𝑎𝑖 𝑗 ⟩, with an optimization objective to minimize 𝑟∗ +ℎ∗
defined in Eq. (1). The 𝑟∗ and ℎ∗ are further formulated in Eq. (2)

and (3), where the descriptions of the terms can be found in Tab. 1.

Specifically, the parameters, including𝐺 edge weight (𝛿𝑘), the path

attribute (𝜃𝑜𝑙), and the hop count (𝜂𝑜) are all fixed values. The path

set 𝑃𝑘 for each 𝑒𝑘 includes all paths in 𝐺 and the cut size (𝑐𝑙) on

each 𝐺 edge 𝑒𝑙 depends on the routing variable (𝑡𝑜𝑘). In Eq. (2),

the function 𝐹𝑙𝑎𝑔(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) will return 0 or 1 depending on the

condition and the numerator calculates the total weight (cut size)

of all 𝐺 edges whose routing path passes through the 𝐺 edge 𝑒𝑙 .

𝑟 ∗ =
ˆ𝛽

max

𝑙=1

𝑐𝑙

𝑤𝑙

=
ˆ𝛽

max

𝑙=1

∑𝛽

𝑘=1
𝛿𝑘 ∗ 𝐹𝑙𝑎𝑔 (𝑒𝑘 routes through 𝑒𝑙)

𝑤𝑙

=
ˆ𝛽

max

𝑙=1

∑𝛽

𝑘=1
𝛿𝑘 ∗ (∑𝑜∈𝑃𝑘 𝜃𝑜𝑙 ∗ 𝑡𝑜𝑘)

𝑤𝑙

(2)

ℎ∗ =
𝛽

max

𝑘=1

∑︁
𝑜∈𝑃𝑘

𝜂𝑜 ∗ 𝑡𝑜𝑘 (3)

In this section, we focus on discussing the maximum wire num-

ber 𝜔 which is a strict constraint for each 𝐺 node 𝑛̂ 𝑗 . The full

formulations of all the variable constraints in the original NPR

problem will be discussed in Sec. 4.3. The objective 𝑟∗ in Eq. (2) is

non-linear w.r.t. the routing variable (𝑡𝑜𝑘) and wire variable (𝑤𝑙) as

shown in Eq. (2), resulting in optimizing 𝑟∗ directly to be extremely

challenging. Therefore, we transform the original NPR problem by

switching the roles of the objective 𝑟∗ and the constraint 𝜔 . In the

transformation, the term 𝑟∗ is constrained to be one, i.e. 𝑟∗ = 1,
while the hard constraint 𝜔 is replaced by a new soft variable
w∗ to be minimized, i.e.

∑
𝑙∈𝐸 𝑗

𝑤𝑙 ≤ 𝑤∗
. Once the value of𝑤∗

is

determined, we can uniformly scale all the obtained wire counts

in the new NPR problem by a factor of
𝜔
𝑤∗ . Since the 𝑟

∗
is fixed as

one in the new NPR problem and with the same cut distribution,

the value of 𝑟∗ after wire scaling will equal
𝑤∗
𝜔 . Therefore, we then

introduce a new objective, shown in Eq. (4), with
𝑤∗
𝜔 as the 𝑟∗ proxy,

for the new NPR problem. This problem transformation allows us

to remove the non-linearity and formulate the new NPR problem

as an ILP problem.

minimize

𝑤∗

𝜔
+ ℎ∗ (4)

We proved Theorem 4.1 to show the equivalence between the

original and the transformed NPR problems. Suppose the wire num-

ber could be any real number, and let𝑤∗
0
and ℎ∗

0
be the minimum

wire number and routing hop count obtained by solving the new

NPR problem minimizing Eq. (4). The final 𝑟∗
0
is then given by

𝑤∗
0

𝜔 .

Theorem 4.1. The optimal value, 𝑟∗
0
+ ℎ∗

0
, achieved in the trans-

formed NPR problem is also optimal for the original NPR problem.

Proof. Suppose there exists a better NPR solution denoted as

𝑆 = ⟨𝑤𝑙 , 𝑣𝑙 , 𝑎𝑖 𝑗 , 𝑡𝑜𝑘 ⟩ for the original NPR problem, which has a smaller

objective 𝑟 ∗ + ℎ
∗
, i.e. 𝑟 ∗ + ℎ

∗
< 𝑟 ∗

0
+ ℎ∗

0
. Since in the original problem,

𝜔 is the maximum wire number for each 𝐺 node 𝑛̂ 𝑗 , we can have∑
𝑙 ∈𝐸̂ 𝑗

𝑤𝑙 ≤ 𝜔, ∀ 𝑗 ∈ [1, 𝛼] . Furthermore, according to the 𝑟∗ definition

in Eq. (2), we have 𝑟 ∗ ≥ 𝑐𝑙
𝑤𝑙

, ∀𝑙 ∈ [1, ˆ𝛽].
Based on 𝑆 , we can construct a solution for the transformed

problem denoted as 𝑆 = ⟨𝑤𝑙 , 𝑤
∗, 𝑣𝑙 , 𝑎𝑖 𝑗 , 𝑡𝑜𝑘 ⟩, where 𝑤𝑙 = 𝑤𝑙 ∗ 𝑟 ∗ and

𝑤∗ = 𝜔 ∗ 𝑟 ∗. Next, we will show that 𝑆 is a feasible solution for the

transformed NPR problem. As the differences between the original

and the transformed problems are only the 𝑟∗ and wire constraints,

the ⟨𝑣𝑙 , 𝑎𝑖 𝑗 , 𝑡𝑜𝑘 ⟩ in 𝑆 are also feasible for the transformed problem. For

the 𝑟∗ constraint of 𝑆 , we have 𝑐𝑙
𝑤̃𝑙

=
𝑐𝑙

𝑤𝑙 ∗𝑟∗
=

𝑐𝑙
𝑤𝑙

∗ 1

𝑟∗ ≤ 𝑐𝑙
𝑤𝑙

∗ 𝑤𝑙
𝑐𝑙

= 1, ∀𝑙 ∈

[1, ˆ𝛽]. For the wire constraint of 𝑆 , we have ∑
𝑙 ∈𝐸̂ 𝑗

𝑤𝑙 =
∑

𝑙 ∈𝐸̂ 𝑗
(𝑤𝑙 ∗𝑟 ∗) =

(∑
𝑙 ∈𝐸̂ 𝑗

𝑤𝑙) ∗ 𝑟 ∗ ≤ 𝜔 ∗ 𝑟 ∗ = 𝑤∗, ∀ 𝑗 ∈ [1, 𝛼]. Thus, 𝑆 also satisfies the 𝑟∗

and wire constraints of the transformed problem and therefore is a

feasible solution.

Since the routing solution of 𝑆 is the same as that of 𝑆 , the

maximum hop count ℎ∗ of 𝑆 is also ℎ
∗
. According to Eq. (4), the

objective of 𝑆 is
𝑤̃∗
𝜔

+ ℎ∗ = 𝑟 ∗ + ℎ∗
< 𝑟 ∗

0
+ ℎ∗

0
. However, this contradicts

the fact that 𝑟∗
0
+ ℎ∗

0
is the optimum of the transformed problem.

Therefore, the assumption is incorrect and the proof is done. □

One example of the problem transformation is illustrated in

Fig. 7. With the same netlist in Fig. 4, we can first obtain an optimal

436

Dynamic Multi-FPGA Prototyping Platforms with Simultaneous Networking, Placement and Routing GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

Wire scaling
FPGA

Partition

x

yy

Cut net,

Net weight: x

FPGA wire,

Wire count: y

5

3

3

10

6

6
𝜔

𝑤∗
=
8

16
=
1

2

Solutions for the

transformed NPR problem

Solutions for the

original NPR problem

10

2

2

4

4 4

4 2

2

10

B

D

C

A D

C

A

B

Figure 7: An example of the problem transformation. The
networking constraint (𝜔 , 𝜇, 𝜈) is (8, 2, 1).

solution for the transformed NPR problem with 𝑟∗ and 𝑤∗
being

1 and 16 respectively. After scaling all the wire counts by
𝜔
𝑤∗ = 1

2
,

we can obtain a valid and optimal solution for the original NPR

problem with the final 𝑟∗ being 2 (𝑤
∗

𝜔).

4.3 Basic ILP Formulation
Based on the above problem transformation, we will first formu-

late the four constraints defined in Sec. 3.3 with the variables

(𝑤𝑙 , 𝑣𝑙 , 𝑡𝑜𝑘 , 𝑎𝑖 𝑗). All necessary terms are described in Tab. 1 and

for brevity, we may not explain all of them again in the following.∑︁
𝑙 ∈𝐸̂ 𝑗

𝑤𝑙 ≤ 𝑤∗ ∀ 𝑗 ∈ [1, 𝛼] (5)

∑︁
𝑙 ∈𝐸̂ 𝑗

𝑤𝑙 ≤
∑︁
𝑖∈𝑁 𝑗

𝑎𝑖 𝑗 ∗𝑀 ∀ 𝑗 ∈ [1, 𝛼] (6)

∑︁
𝑙 ∈𝐸̂ 𝑗

𝑣𝑙 ≤
∑︁
𝑖∈𝑁 𝑗

𝑎𝑖 𝑗 ∗ 𝜇 ∀ 𝑗 ∈ [1, 𝛼] (7)

𝑣𝑙 ≤ 𝑤𝑙 ≤ 𝑣𝑙 ∗𝑀 ∀𝑙 ∈ [1, ˆ𝛽] (8)∑︁
𝑗 ∈𝑁̂𝑖

𝑎𝑖 𝑗 = 1 ∀𝑖 ∈ [1, 𝛼] (9)∑︁
𝑖∈𝑁 𝑗

𝑎𝑖 𝑗 ≤ 1 ∀ 𝑗 ∈ [1, 𝛼] (10)∑︁
𝑜∈𝑃𝑘

𝑡𝑜𝑘 = 1 ∀𝑘 ∈ [1, 𝛽] (11)

𝜂𝑜 ∗ 𝑡𝑜𝑘 ≤
∑︁
𝑙 ∈𝐸̂′

𝑜

𝑣𝑙 − 1 ∀𝑘 ∈ [1, 𝛽], ∀𝑜 ∈ 𝑃𝑘 (12)

𝑎𝑖1 𝑗1 + 𝑎𝑖2 𝑗2 ≤
∑︁

𝑜∈𝑃 𝑗
1
𝑗
2

𝑡𝑜𝑘 + 1 ∀𝑘 ∈ [1, 𝛽], ∀ 𝑗1 ≠ 𝑗2 ∈ [1, 𝛼],

𝑖1, 𝑖2 ∈ 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 (𝑒𝑘) (13)∑︁
𝑜∈𝑃𝑘

𝜂𝑜 ∗ 𝑡𝑜𝑘 ≤ ℎ∗ ∀𝑘 ∈ [1, 𝛽] (14)

𝛽∑︁
𝑘=1

∑︁
𝑜∈𝑃𝑘

𝛿𝑘 ∗ 𝜃𝑜𝑙 ∗ 𝑡𝑜𝑘 ≤ 𝑤𝑙 ∀𝑙 ∈ [1, ˆ𝛽] (15)

𝑤𝑙 , 𝑤
∗ ∈ N, 𝑣𝑙 ∈ {0, 1} ∀𝑙 ∈ [1, ˆ𝛽] (16)

𝑡𝑜𝑘 ∈ {0, 1} ∀𝑘 ∈ [1, 𝛽], ∀𝑜 ∈ 𝑃𝑘 (17)

𝑎𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ [1, 𝛼], ∀ 𝑗 ∈ [1, 𝛼] (18)

There are three types of constraints related to networking, place-

ment and routing. Firstly, the networking variables (𝑤𝑙 , 𝑣𝑙) must

satisfy the constraints (5) - (8). As the core of the problem transfor-

mation, Eq. (5) requires that the wire number (𝑤𝑙) of each 𝐺 node

can not exceed the variable𝑤∗
. In Eq. (6),𝑀 is a large constant. If

𝐺 node 𝑛̂ 𝑗 is used (i.e., there is one 𝐺 node assigned to 𝑛̂ 𝑗), Eq. (6)

will have no constraint on the wire counts on 𝑛̂ 𝑗 . Otherwise, it

will make the wire counts zero to avoid redundant wire allocation.

Similarly, Eq. (7) ensure the actual edge number of 𝑛̂ 𝑗 cannot exceed

the maximum number (𝜇) if the 𝑛̂ 𝑗 is used. Since the variable 𝑤𝑙

and 𝑣𝑙 are affected by each other, Eq. (8) ensures that if 𝑣𝑙 is 0,𝑤𝑙 is

also 0, and𝑤𝑙 ≥ 1 otherwise.

Secondly, the placement variable (𝑎𝑖 𝑗) and the routing variable

(𝑡𝑜𝑘) must satisfy the constraints (9) - (12). Eq. (9) and (10) ensure

that each 𝐺 node is assigned to a 𝐺 node and each 𝐺 node can

accommodate one 𝐺 node at most. The candidate 𝐺 node set 𝑁̂𝑖 in

Eq. (9) includes all 𝐺 nodes for each 𝐺 node in the basic ILP for-

mulation. In Eq. (11), each 𝐺 edge must select exactly one routing

path. The routing path set 𝑃𝑘 in the basic ILP formulation includes

all the routing paths in 𝐺 for each 𝐺 edge. Eq. (12) and (13) align

the routing solution with the networking solution and the place-

ment solution respectively. In Eq. (12), 𝐸′𝑜 denotes the 𝐺 edge set

containing in the routing path 𝑝𝑜 . If 𝑝𝑜 is selected by any 𝐺 edge

(i.e., 𝑡𝑜𝑘 = 1), all the 𝐺 edges in 𝐸′𝑜 must be used (i.e. 𝑣𝑙 = 1). In

Eq. (13), if the endpoints of 𝐺 edge 𝑒𝑘 , i.e. 𝑛𝑖1 and 𝑛𝑖2 , are assigned

to 𝐺 nodes 𝑛̂ 𝑗1 and 𝑛̂ 𝑗2 , 𝑒𝑘 must choose one routing path from the

path set (𝑃 𝑗1 𝑗2) between 𝑛̂ 𝑗1 and 𝑛̂ 𝑗2 (i.e.
∑
𝑜∈𝑃 𝑗

1
𝑗
2

𝑡𝑜𝑘 = 1).

In addition, there are also two constraints related to the 𝑟∗ and
ℎ∗ in Eq. (14) and (15). Eq. (14) ensures that ℎ∗ is the maximum hop

count for all routing paths. As the other core of the transformation,

the 𝑟∗ in the transformed NPR problem is fixed as one, which is

realized by Eq. (15).

In the basic ILP formulation, the candidate 𝐺 node set includes

all 𝐺 nodes for each 𝐺 node. The candidate routing paths for each

𝐺 edge then include all routing paths in 𝐺 . As a result, the total

number of the routing variables is the product of the number of 𝐺

edges (𝛽) and the number of routing paths (𝛾), which significantly

dominates the size of the other variables. For large-scale circuit

designs, this can lead to a large number of routing variables, making

it challenging to solve the ILP problem efficiently within a limited

time. To address this issue and to prune the solution space, we

propose a two-level ILP optimization and 𝐺 edge grouping.

4.4 Two-level ILP Optimization
In the two-level ILP optimization, we first perform a coarse-level cut-

driven placement and then a fine-level placementwith simultaneous

networking and routing. During the coarse level, we divide 𝐺 into

four quadrants and construct a coarsened FPGA graph (CFG). Each

CFG node represents one quadrant of 𝐺 and is connected with its

two horizontal and vertical neighbors. Next, we apply a relatively

smaller ILP model to assign 𝐺 nodes to CFG nodes and minimize

the maximum cut size on CFG edges.

After solving the coarse-level ILP problem, we obtain the candi-

date region, i.e. the𝐺 node set 𝑁̂𝑖 for each𝐺 node 𝑛𝑖 . The new size

of 𝑁̂𝑖 is approximately
1

4
of the original size (𝛼). As explained at

the end of Sec. 4.1, the candidate routing paths for each𝐺 edge will

then be approximately
1

16
of all the routing paths in𝐺 . As a result,

the total number of routing variables can be reduced to
1

16
∗ 𝛽 ∗ 𝛾 .

We then apply a fine-level ILP optimization with Eq. (4) - (18) to

perform simultaneous networking, placement, and routing. The

size of the fine-level ILP is significantly smaller than that of the

basic ILP formulation.

437

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Xinshi Zang, Qin Luo, Zhongwei Shao, Jifeng Zhang, Evangeline F.Y. Young, and Martin D.F. Wong

4.5 Partition Edge Grouping
Although the coarse-level placement can reduce the number of

routing variables for each 𝐺 edge, the total number of routing vari-

ables can still be huge for ILP solving when the number of𝐺 edges

(𝛽) is large. Therefore, we propose an edge grouping technique

to further reduce the total number of routing variables after the

coarse-level placement. We divide the 𝐺 edges into 𝜆 groups based

on their weights. We use one-dimensional k-means clustering to

put 𝐺 edges with similar weights into the same edge group. The

weight of an edge group 𝑔𝑞 is set as the maximum weight of all

the 𝐺 edges in 𝑔𝑞 . The routing variables, 𝑡 ′𝑜𝑞 , will be used to rep-

resent the choices of routing paths for 𝑔𝑞 . We then replace the

routing variable 𝑡𝑜𝑘 with 𝑡 ′𝑜𝑞 and make corresponding adaptations

in Eq. (11) - (15). Let 𝐸𝑞 denote the set of 𝐺 edges in 𝑔𝑞 and we

need to select |𝐸𝑞 | different routing paths for the 𝐺 edges in 𝑔𝑞 in

alignment with the placement solution. In this work, we put 𝜆 as

10 to get a good balance between the number of edge groups and

the weight similarity within an edge group.

4.6 Wire Legalization with Quadratic
Programming

Since the wire constraints are relaxed in our basic ILP formulations,

the final wire solution needs to be legalized into an integral solution

satisfying the maximum wire constraint (𝜔). Besides, the cut size

calculated on each𝐺 edge may not be accurate due to the hyperedge

expansion and edge grouping operations. To address these issues,

we propose a post-processing stage to compute the actual cut size

and to legalize the wires using Quadratic Programming (QP). Based

on the NPR solution, we first re-calculate the cut size 𝑐𝑙 on each 𝐺

edge 𝑒𝑙 and minimize the final 𝑟∗ in Eq. (19) while satisfying the

constraints (20) - (22). Here, 𝐸 denotes the set of 𝐺 edges with non-

zero wires in the original networking solution. It is important to

note that the QP-based legalization only adjusts the wire numbers

and will not change the network topology nor the placement and

routing solution. Since the size of the QP is small, the optimal

solution to the QP problem can be obtained quickly.

minimize 𝑟 ∗ (19)

subject to

∑︁
𝑙 ∈𝐸̂ 𝑗 ,𝑙 ∈𝐸̂

𝑤𝑙 ≤ 𝜔 ∀ 𝑗 ∈ [1, 𝛼] (20)

𝑐𝑙 ≤ 𝑟 ∗ ∗ 𝑤𝑙 ∀𝑙 ∈ 𝐸 (21)

𝑤𝑙 ∈ [1, 𝜔], 𝑤𝑙 ∈ Z ∀𝑙 ∈ 𝐸 (22)

5 EXPERIMENTAL EVALUATION
In this study, we utilized C++ to implement all the methods, which

were subsequently evaluated on a Linux server featuring an Intel

Xeon 2.9GHz CPU and 256GB of memory. For solving ILP instances,

we employed CPLEX version 22.1.0 as the ILP solver. The default

configuration of the ILP solver was used, employing a thread count

of 20 and a time limit of 1000 seconds. For circuit partitioning, we

applied PaToH [4] to perform min-cut partitioning while satisfying

FPGA resource constraints. The partitioning results will be used to

test different methods of networking and routing for multi-FPGA

platforms.

5.1 Benchmarks
We did experiments on the Titan23 [14] and ICEEC 2022 con-

test [1] benchmarks
1
. The circuit statistics for both the Titan23

and ICEEC22 benchmarks are presented in Tab. 2 and 3. There are

a total of 10 circuits in the ICEEC22 benchmark, but the sizes of the

case1 - case6 circuits are very small and we excluded them from

our experiments. For the ICEEC22 benchmark, the networking con-

straints (𝜔 , 𝜇, 𝜈) are specified individually for each design. For the

Titan23 benchmark, the constraints are specified as (800, 32, 4) for

all cases.

5.2 Overall Performance
We compared our method with two kinds of baselines on Titan23

circuit benchmarks, including the state-of-the-art general dynamic

networking method [16] and the methods using fixed MFP net-

works. For the second baselines, the three networks described in

Fig. 2 are used, and an ILP formulation based on Eq. (9) to (13) is em-

ployed for system-level routing. As presented in Tab. 2, among all

fixed FPGA networks, the 1-hop network demonstrates the highest

frequency. Compared with the 1-hop network and the method [16],

our method still achieves approximately 49% and 11% improve-

ments. It is worth noting that the method [16] requires any two

FPGAs to be connected when there are signal nets connecting them,

which hardly holds in practice. In contrast, our method can not only

dynamically optimize wire distribution to align with the cut dis-

tribution but also adapt interconnections to accommodate diverse

routing requirements.

Table 2: Frequency results of Titan23 benchmarks. The fre-
quency is in MHz, which holds for all the following tables.

Cases #Nodes #Nets 4-way 8-way 1-hop [16] Ours

cholesky_mc 108,441 140,139 9.22 8.22 12.67 23.33 24.36
des90 110,517 138,853 12.07 11.59 12.49 23.81 25.25
bitonic_mesh 190,714 233,978 7.81 6.37 8.57 12.50 12.40

dart 202,354 223,301 28.86 35.37 28.86 44.02 44.03
openCV 212,449 279,104 4.68 3.60 4.49 5.41 7.32
minres 257,377 316,569 10.10 9.66 12.20 31.25 35.63
cholesky_bdti 255,410 331,676 4.48 5.19 6.31 12.50 17.99
gsm_switch 490,030 504,592 6.84 7.10 8.43 12.90 15.41
LU230 567,806 662,911 5.28 5.15 6.23 12.12 12.10

bitcoin_miner 1,087,505 1,446,377 3.82 2.84 4.26 9.09 10.54
Avg. Ratio - - 0.46 0.43 0.51 0.89 1.00

Table 3: Frequency results of ICEEC22 benchmarks.

Cases #Nodes #Nets 𝜔 𝜇 𝜈 1st 2nd Ours

case7 54,970 76,258 800 8 2 100.00 50.17 100.00
case8 62,846 86,139 800 8 3 33.30 50.85 58.42
case9 784,814 871,588 1600 16 4 11.00 20.24 40.00
case10 3,066,539 3,324,963 3200 32 4 13.20 3.10 45.00
Avg. Ratio - - - - - 0.53 0.49 1.00

We further conducted a comparative analysis against the top

two teams
2
in the ICEEC 2022 contest, which represents state-of-

the-art methods for ICEEC22 benchmarks. As depicted in Tab. 3,

our method exhibits the most remarkable performance in all cases

1
All benchmarks are stored in https://drive.google.com/drive/folders/1-uzy-

BMXmmN4EqrSgG5VKIN9Z58bZeOs?usp=sharing.

2
The results of the top two teams were obtained from the contest organizer.

438

Dynamic Multi-FPGA Prototyping Platforms with Simultaneous Networking, Placement and Routing GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

and outperforms the top team by an impressive 47% in terms of the

average per-case ratio of the system frequency.

5.3 Impact of Networking Constraints
To investigate the impact of networking constraints, we conducted

a verification of our method on the Titan23 benchmark with three

additional networking constraints in terms of 𝜇 and 𝜈 . Larger values

of 𝜇 and 𝜈 indicate that each FPGA can be connected to a greater

number of FPGAs and to FPGAs at a larger distance apart. As

shown in Tab. 4, our method with larger 𝜇 and 𝜈 values exhibits

superior performance, attributed to the expanded solution space for

networking. Moreover, comparing the results in Tab. 2 and 4, our

method with e4-d1 and e8-d2 constraints still outperforms the 4-

way, 8-way, and 1-hop networks that have the same interconnection

scopes. This justifies the effectiveness of our co-optimization of

networking and routing.

Table 4: Frequency results of our method with different net-
working constraints. (𝑚,𝑛) refers to 𝜇 =𝑚 and 𝜈 = 𝑛.

Cases (4, 1) (8, 2) (12, 3) (32, 4)

cholesky_mc 13.43 19.01 19.62 24.36
des90 17.15 20.17 25.25 25.25
bitonic_mesh 9.22 11.22 12.44 12.40

dart 29.42 44.03 44.03 44.03
openCV 5.09 6.41 7.34 7.32

minres 14.01 20.73 24.27 35.63
cholesky_bdti 7.33 11.91 15.32 17.99
gsm_switch 8.66 11.85 13.41 15.41
LU230 6.61 10.71 11.50 12.10
bitcoin_miner 5.63 8.15 10.63 10.54

Avg. Ratio 0.58 0.80 0.92 1.00

5.4 Ablation Study
In this section, we explore the effects of the two-level ILP optimiza-

tion and the edge grouping techniques. We propose two variants:

Ours-v1, which does not employ neither the TL nor the EG tech-

niques, and Ours-v2, which excludes the TL technique only. As

shown in Tab. 5, Ours-v1 not only fails to find feasible solutions in

five cases but also generates a sub-optimal solution for the minres

design. Although Ours-v2 can find feasible solutions for most of

the cases, the frequency is slightly worsened in certain cases like

LU230 and bitcoin_miner.

Table 5: Ablation study. For the ILP solving status, ‘O’, ‘F’, and
‘-’ mean optimal, feasible, and infeasible respectively.

Cases

Ours-v1 Ours-v2 Ours

𝑓 𝑟𝑒𝑞 𝑠𝑡𝑎𝑡𝑢𝑠 𝑓 𝑟𝑒𝑞 𝑠𝑡𝑎𝑡𝑢𝑠 𝑓 𝑟𝑒𝑞 𝑠𝑡𝑎𝑡𝑢𝑠

cholesky_mc 24.36 O 24.36 O 24.36 O

des90 25.25 O 25.25 O 25.25 O

bitonic_mesh - - 12.39 F 12.40 F

dart 44.03 O 44.03 O 44.03 O

openCV - - 7.26 F 7.32 F

minres 26.27 F 35.48 F 35.63 F

cholesky_bdti - - - - 17.99 F

gsm_switch 15.41 F 15.41 F 15.41 O

LU230 - - 11.26 F 12.10 F

bitcoin_miner - - 10.00 F 10.54 F

Avg. Ratio 0.96 - 0.99 - 1.00 -

6 CONCLUSION
In this work, we present a dynamic networking framework for

multi-FPGA platforms. The transformation of the wire-constrained

networking, placement, and routing problem and the formulation as

an ILP problem, along with the proposed speed-up techniques, en-

sure an efficient solving process. Experimental results demonstrate

the effectiveness of our method, surpassing both the other dynamic

networking methods and the approaches employing pre-designed

and fixed networks. Our work offers a valuable contribution to dy-

namic multi-FPGA platforms, enabling higher system frequencies

and efficient customization.

REFERENCES
[1] 2022. Dynamic Networking Iterative Partitioning Algorithm Design. https:

//eda.icisc.cn/en/file/cacheFile/d5997d47f1ba4e05a27bc782dc2fae05.pdf. [Online;

accessed 17-Sep-2023].

[2] Sameh Asaad, Ralph Bellofatto, Bernard Brezzo, Chuck Haymes, Mohit Kapur,

Benjamin Parker, Thomas Roewer, Proshanta Saha, Todd Takken, and José Tierno.

2012. A cycle-accurate, cycle-reproducible multi-FPGA system for accelerating

multi-core processor simulation. In Proceedings of the ACM/SIGDA international
symposium on Field Programmable Gate Arrays. 153–162.

[3] Jonathan Babb, Russell Tessier, Matthew Dahl, Silvina Zimi Hanono, David M

Hoki, and Anant Agarwal. 1997. Logic emulation with virtual wires. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (1997).

[4] Ümit V Çatalyürek and Cevdet Aykanat. 2011. Patoh (partitioning tool for

hypergraphs). In Encyclopedia of Parallel Computing.
[5] Ming-Hung Chen, Yao-Wen Chang, and Jun-Jie Wang. 2021. Performance-driven

simultaneous partitioning and routing for multi-FPGA systems. In 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1129–1134.

[6] Umer Farooq, Roselyne Chotin-Avot, Moazam Azeem, Maminionja Ravoson,

and Habib Mehrez. 2018. Novel architectural space exploration environment

for multi-FPGA based prototyping systems. Microprocessors and Microsystems
(2018).

[7] Scott Hauck, Gaetano Borriello, and Carl Ebeling. 1998. Mesh routing topologies

for multi-FPGA systems. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems (1998).

[8] William NN Hung and Richard Sun. 2018. Challenges in large FPGA-based logic

emulation systems. In International Symposium on Physical Design.
[9] Masato Inagi, Yuichi Nakamura, Yasuhiro Takashima, and Shin’ichi Wakabayashi.

2015. Inter-FPGA routing for partially time-multiplexing inter-FPGA signals on

multi-FPGA systems with various topologies. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences 98, 12 (2015), 2572–2583.

[10] Helena Krupnova. 2004. Mapping multi-million gate SoCs on FPGAs: industrial

methodology and experience. In Proceedings Design, Automation and Test in
Europe Conference and Exhibition, Vol. 2. IEEE, 1236–1241.

[11] Ari Kulmala, Erno Salminen, and Timo D Hämäläinen. 2007. Evaluating large

system-on-chip on multi-FPGA platform. In Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation: 7th International Workshop, SAMOS 2007,
Samos, Greece, July 16-19, 2007. Proceedings 7. Springer, 179–189.

[12] Sin-Hong Liou, Sean Liu, Richard Sun, and Hung-Ming Chen. 2020. Timing

driven partition for multi-fpga systems with tdm awareness. In Proceedings of
the 2020 International Symposium on Physical Design. 111–118.

[13] Wai-Kei Mak and Evangeline FY Young. 2002. Temporal logic replication for

dynamically reconfigurable FPGA partitioning. In Proceedings of the 2002 inter-
national symposium on Physical design. 190–195.

[14] Kevin E Murray, Scott Whitty, Suya Liu, Jason Luu, and Vaughn Betz. 2013. Titan:

Enabling large and complex benchmarks in academic CAD. In International
Conference on Field Programmable Logic and Applications.

[15] Qingshan Tang, Habib Mehrez, and Matthieu Tuna. 2012. Design for prototyping

of a parameterizable cluster-based Multi-Core System-on-Chip on a multi-FPGA

board. In 2012 23rd IEEE International Symposium on Rapid System Prototyping.
[16] Qingshan Tang, Matthieu Tuna, and Habib Mehrez. 2014. Performance compari-

son between multi-fpga prototyping platforms: Hardwired off-the-shelf, cabling,

and custom. In International Symposium on Field-Programmable Custom Comput-
ing Machines.

[17] Mariem Turki, Habib Mehrez, Zied Marrakchi, and Mohamed Abid. 2013. Par-

titioning constraints and signal routing approach for multi-fpga prototyping

platform. In International Symposium on System on Chip.
[18] Dan Zheng, Xiaopeng Zhang, Chak-Wa Pui, and Evangeline FY Young. 2021.

Multi-FPGA Co-optimization: Hybrid Routing and Competitive-based Time Divi-

sion Multiplexing Assignment. In Proceedings of the 26th Asia and South Pacific
Design Automation Conference. 176–182.

439

https://eda.icisc.cn/en/file/cacheFile/d5997d47f1ba4e05a27bc782dc2fae05.pdf
https://eda.icisc.cn/en/file/cacheFile/d5997d47f1ba4e05a27bc782dc2fae05.pdf

	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 MFP Networks
	3.2 MFP Frequency Evaluation
	3.3 Problem Formulation

	4 Methodology
	4.1 Partitioning Graph (G) and FPGA Graph ()
	4.2 Problem Transformation
	4.3 Basic ILP Formulation
	4.4 Two-level ILP Optimization
	4.5 Partition Edge Grouping
	4.6 Wire Legalization with Quadratic Programming

	5 experimental evaluation
	5.1 Benchmarks
	5.2 Overall Performance
	5.3 Impact of Networking Constraints
	5.4 Ablation Study

	6 Conclusion
	References

