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a b s t r a c t 

Efficient model inference is an important and practical issue in the deployment of deep neural networks 

on resource constraint platforms. Network quantization addresses this problem effectively by leverag- 

ing low-bit representation and arithmetic that could be conducted on dedicated embedded systems. In 

the previous works, the parameter bitwidth is set homogeneously and there is a trade-off between su- 

perior performance and aggressive compression. Actually, the stacked network layers, which are gener- 

ally regarded as hierarchical feature extractors, contribute diversely to the overall performance. For a 

well-trained neural network, the feature distributions of different categories are organized gradually as 

the network propagates forward. Hence the capability requirement on the subsequent feature extractors 

is reduced. It indicates that the neurons in posterior layers could be assigned with lower bitwidth for 

quantized neural networks. Based on this observation, a simple yet effective mixed-precision quantized 

neural network with progressively decreasing bitwidth is proposed to improve the trade-off between ac- 

curacy and compression. Extensive experiments on typical network architectures and benchmark datasets 

demonstrate that the proposed method could achieve better or comparable results while reducing the 

memory space for quantized parameters by more than 25% in comparison with the homogeneous coun- 

terparts. In addition, the results also demonstrate that the higher-precision bottom layers could boost the 

1-bit network performance appreciably due to a better preservation of the original image information 

while the lower-precision posterior layers contribute to the regularization of k −bit networks. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The deep convolutional neural networks (CNNs) have achieved 

tate-of-the-art results on computer vision tasks, such as image [1–

] , object detection [6,7] , and semantic segmentation [8–10] . These 

chievements depend on the complicated model that overfits the 

istribution of numerous training data. However, this also leads 

o over-parameterization and dramatic computation cost. A typi- 

al CNN often takes hundreds of MB memory space, i.e., 170MB 

or ResNet-101 [3] , 250MB for AlexNet [1] , 550MB for VGG-19 [2] ,

nd requires billions of FLOPs per image during inference that rely 

n powerful GPUs. This challenges the deployment of CNNs on the 

dge devices, such as mobile phones and drones. Thus the network 

ompression and acceleration is an important issue in deep learn- 

ng research and application. 
∗ Corresponding author at: Institute of Image Processing and Pattern Recognition, 

hanghai Jiao Tong University, Shanghai 200240, China. 

E-mail addresses: chutianshu@sjtu.edu.cn (T. Chu), tomqin@sjtu.edu.cn (Q. Luo), 

ieyang@sjtu.edu.cn (J. Yang), xiaolinhuang@sjtu.edu.cn (X. Huang). 

t

H

d

A

t

ttps://doi.org/10.1016/j.patcog.2020.107647 

031-3203/© 2020 Elsevier Ltd. All rights reserved. 
Several techniques have been proposed to tackle this issue via 

ompact neural architecture design [11,12] , model pruning [13,14] , 

nd network quantization [15] . With the network topology un- 

hanged, the quantization is able to reduce the model size greatly 

o only a fraction of the origin by utilizing low-precision represen- 

ation of parameters [16] . Furthermore, the internal features could 

lso be quantized. Then the model inference is accelerated signifi- 

antly by converting the expensive floating-point arithmetic to the 

ore effective fixed-point operations. Hence both the spatial and 

omputational complexities are reduced notably by quantization. 

Binary neural network (BNN) is a typical aggressive quantiza- 

ion method [17] . The model weights and activations are expressed 

s {−1 , +1 } that could be stored by only 1-bit. Benefiting from the

itwise operations, the dot-product between binary weights and 

ctivations is replaced by XNOR and POPCOUNT arithmetics. Hence 

he deployment of BNN is no longer constrained by the GPUs. 

owever, the naive BNN suffers from non-negligible performance 

egradation, especially on large-scale and complicated tasks [15] . 

lthough some proposed techniques have alleviated the informa- 

ion loss through improved binarization scheme, network topology, 
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3

n

nd training algorithm, there still exists nontrivial accuracy gap be- 

ween BNN and the full-precision network [18–20] . Contemporar- 

ly, an effective method to boost the compact model performance 

s representing the model variables with fixed-point values, i.e., 

uantized neural network (QNN) [15] . As represented in [21,22] , 

he QNNs are able to achieve comparable accuracy as the full- 

recision networks under the circumstance of 4-bit quantization. 

evertheless, larger bitwidth means the linear increase of model 

ize and higher requirement on the hardware capacity. When the 

omputing resources are extremely limited, it is necessary to make 

 trade-off between model accuracy and compression. 

In this paper, we work on this trade-off issue by referring to 

ixed-precision approach. In fact, the network layers contribute 

iversely to the overall performance and each has different sensi- 

ivity to quantization. While the network propagating forward, the 

issimilarity between hierarchical features is enhanced progres- 

ively. In the shallower layers, the internal features are distributed 

n complex manifolds. Accurate neurons are necessary to obtain 

he subsequent features. While in deeper layers, a rough convolu- 

ional filter is able to distinguish the previous local features as the 

eep semantic features are more separable. Hence the parameter 

recision could be designed flexibly based on the network struc- 

ure and the distribution of hierarchical features. In this paper, a 

imple yet effective QNN with progressively decreasing bitwidth is 

roposed and the overview structure could be found in Fig. 1 . The 

riginal information is preserved well by the high-precision bot- 

om layers while the model size is compressed further due to the 

ow-precision representation of top layers. 

Our main contributions are: 

1. Based on the observation on internal feature distributions and 

network structure, a mixed-precision QNN with progressively 

decreasing bitwidth is proposed. 

2. Four typical classification CNNs, including VGG, AlexNet, and 

ResNet-18/20, and two object detection frameworks, SSD and 

Faster R-CNN, are quantized based on the proposed mixed- 

precision method. A heuristic of bitwidth assignment based on 

the quantitative separability for feature representation is given. 

The layer-wise bitwidth gradually reduces to 1-bit from 4-bit or 

8-bit. 

3. The re-designed QNNs are validated on several benchmark 

datasets, including CIFAR-10/100, ILSVRC-2012, and PASCAL 

VOC. The experimental results demonstrate that the mixed- 

precision networks could achieve preferable or very similar per- 

formance while requiring at least 25% less memory space for 

quantized parameters. 

The rest of this paper is organized as follows. Section 2 provides 

 summary of related works. Based on the analysis on the fea- 

ure distributions of different layers, a multi-level quantized struc- 

ure with gradually decreasing bitwidth is proposed in Section 3 . 

n Section 4 , we demonstrate the effectiveness of the mixed preci- 

ion framework via extensive experiments on several typical CNNs 

rchitectures and benchmark datasets. Section 5 ends this paper 

ith some conclusions. 

. Related work 

Network compression and acceleration is critical to the practi- 

al deployment of CNNs on edge devices. One kind of paradigm fo- 

uses on the network topology structure. Some researches focus on 

he design of compact neural architecture. Many lightweight net- 

orks are proposed, including ResNet [3] , DenseNet [4] , MobileNet 

23] , and ShuffleNet [24] . Besides, there exist some methods that 

earch for an effective neural architecture via reinforcement learn- 

ng [11,12,25] . Some other researches conduct model compression 
2 
rom the opposite direction. A tiny network is obtained via prun- 

ng and sparsity constraints on the basis of a well-trained complex 

etwork [13,26,27] . 

Network quantization addresses the compression and accelera- 

ion issue from the perspective of data format while preserving the 

etwork architecture. In [28] , the results show that half-precision 

odel is able to acquire promising accuracy. This indicates that the 

arameters could be stored by lower bitwidth and the model size 

s scaled down. Moreover, the intermediate variables could also 

e represented by discrete values. Then the computationally ex- 

ensive floating-point arithmetics are replaced by the fixed-point 

nd bitwise operations which are able to be conducted on the 

edicated hardware. As shown in Fig. 2 , both the full-precision 

nd low-bit variables are preserved in the computation graph 

uring the training phase. To make backward-propagation feasi- 

le, the gradients flow through the non-differentiable quantizer 

traightly, i.e., by s traight- t hrough gradient e stimator (STE) [15,29] . 

ome training characteristics and theoretical analysis are demon- 

trated in [19,30–32] . After training, the full-precision weights are 

emoved during deployment. 

BNN is an aggressive form of network quantization. The weights 

nd activations are expressed as {−1 , +1 } according to the signs. 

hus the memory space required for each variable is reduce to only 

-bit and the model size after binarization is nearly 1/32 of the 

rigin [33] . In addition, the inference efficiency is improved sub- 

tantially by leveraging the XNOR and POPCOUNT operations [15] . 

owever, the extreme compression leads to heavy information loss 

uring binarization. There exists nontrivial accuracy gap between 

NN and the full-precision counterpart, especially on complicated 

asks. Some techniques are proposed to alleviate the performance 

oss via modified binarization scheme [18,20] and network ar- 

hitecture [34] . These improvements are limited with extra full- 

recision arithmetic introduced. 

Another effective way to improve the model capability is as- 

igning larger bitwidth to the network variables, i.e., conservative 

uantization [15] . A general and flexible quantization method is 

roposed in [35] and achieves promising accuracy on ILSVRC-2012 

22] and [36] improve the QNN performance further by adjusting 

he quantization step size during back-propagation. In the case of 

-bit quantization, the QNN could achieve comparable results as 

he full-precision counterpart. However, the increase of bitwidth 

eans scale-up of the model size. There is a trade-off between su- 

erior performance and aggressive compression. 

Among the methods mentioned above, all the model weights 

re treated equally and assigned with the same bitwidth. Ac- 

ually, the parameters in the stacked neural network contribute 

ifferently to the overall results. It indicates that the parameter 

itwidth should be determined by its individual function. More- 

ver, some advance chips are released, including Apple A12 Bionic 

nd Nvidia Turing GPU, that support mixed-precision arithmetic. 

ence some researches tackle the QNN trade-off issue via mixed- 

recision method. In [37] and [38] , the bitwidth of each parameter 

s set according to the quantization residual of a pre-trained net- 

ork. Wang [39] fine-tune the bitwidth via reinforcement learn- 

ng. In this paper, we explore the layer-wise bitwidth from another 

erspective and propose a simple but effective mixed-precision 

ramework. In comparison with the previous work, this proposed 

ethod is more flexible and compatible with various quantization 

chemes. 

. Methodology 

.1. Quantization function 

As Fig. 2 shows, the discrete data flow through the stacked 

eural cells which consist of quantization, multiply-accumulation 
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Fig. 1. The bitwidth settings of the k −bit homogeneous QNN (left) and the mixed-precision counterpart (right). The width of neural block will indicate the model size. 

The feature distributions after t-SNE transformation are depicted in the middle. In the initial layer, the quantitative separability s is low. Delicate neurons are required to 

distinguish the similar feature manifolds. As the network propagates forward, the feature distribution of the same category gathers gradually. In the deep hidden layers, a 

neuron with lower-precision parameters is able to extract robust feature. 
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MAC), batch normalization, and activation. While the storage and 

omputation cost is reduced notably, the information loss is in- 

vitable due to quantization error during this process. An appro- 

riate quantization module which is able to preserve the valuable 

nformation in the continuous variables is crucial for the network 

erformance. 

.1.1. Binarization 

An extreme quantization method is to store the discrete value 

y 1-bit, i.e., binarization. Given a variable x ∈ R 

n , the binary value

 b is determined by the sign. In order to enlarge the value range, 

 scaling factor 
‖ x ‖ 1 

n is introduced. Then MAC is conducted by 

NOR and POPCOUNT operations. However, the binarization func- 

ion B ( · ) maps a continuous set R 

n onto a discrete set {−1 , +1 } n .
he non-differentiability is an obstacle during the backward prop- 

gation and challenges the training of QNN. To address this issue, 

he STE is proposed to bypass the quantizer [15,29] . The forward 

nd backward computations of binarization are shown as follows. 

 ( · ) is the indicator function. If the condition is satisfied, the indi-

ator returns 1. Otherwise, it returns 0. 

Forward: x b = B (x ) = 

‖ x ‖ 1 
sign (x ) , 
n 

3 
Backward: 
∂B 

∂x 
≈ I(| x | < 1) . 

.1.2. Quantization 

The conservative quantization can improve the model capacity 

ignificantly by utilizing a larger bitwidth k > 1. A general linear 

unction Q ( · ) is defined as 

Forward: x q = Q(x ) = 

1 

2 

k − 1 

� (2 

k − 1) x � , 

Backward: 
∂Q 

∂x 
≈ 1 , 

here x ∈ [0, 1] n and x q ∈ [0, 1] n denote the full-precision and

uantized values, and � · � represents the rounding operation. The 

TE gradient is utilized either in the backward of Q ( · ). With this 

unction, the model weights and activations could be discretized 

fter proper preprocessing as follows. 

.1.3. Weight quantization 

For a continuous weight tensor W ∈ R 

m × n , it is necessary to 

roject the unbounded elements into the specified interval [0, 1]. 
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Fig. 2. The computation graph of a neural cell in QNN. The black arrows depict 

the forward data flow and the blue ones show the backward-propagation. Both 

the full-precision and quantized values are remained during training. The non- 

differentiable quantizer module is bypassed in the computation graph. After train- 

ing, full-precision weights are discarded during deployment. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 

Fig. 3. The the histogram of network weight parameters. The first column depicts 

the distribution of weights from three different layers in well-trained full-precision 

network. The second column demonstrates the quantized weights from the accord- 

ing layers in a well-trained QNN. The images from top to bottom in the second 

column represent the 8-bit, 4-bit and 2-bit quantization results respectively. 
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he most straightforward normalization is scaling and shifting af- 

er dividing the largest absolute value. However, the majority of 

he continuous weight values distribute around the zero-point as 

ig. 3 shows. The straightforward division would make the nor- 

alization dominant by the outliers and lead to additional round- 

ff quantization error. Hence a non-linear transformation, the hy- 

erbolic tangent function, is introduced to alleviate the impact of 

ong-tail distribution. The saturation effect of tanh ( · ) can sup- 

ress the variation of large values and avoid outliers during train- 

ng. It is also worth noticing that the MAC operations are con- 

ucted channel-wise, 

ˆ 
 i = W i · a, W 

T , a ∈ R 

n . 
i 

4 
he MAC results are related to the weight values in the corre- 

ponding channels. Hence it is more suitable to do channel-wise 

ormalization. The extra scaling factors can be merged into the 

atch normalization and no addition computation cost is intro- 

uced during deployment. Thus the overall quantization procedure 

or weights is as follows, 

ˆ W = tanh (W ) , 

M i = max 
j 

(| ˆ W i j | ) , 

 q,i j = 2 · Q 

(
ˆ W i j 

2 · M i 

+ 

1 

2 

)
− 1 . 

.1.4. Activation quantization 

For the activation quantization, it is theoretically feasible to 

dopt the similar strategy as weight parameters. But the model 

fficiency will drop dramatically due the additional floating-point 

perations in preprocessing. Therefore a clamp function is usually 

pplied as the activation function to confine the features to the 

pecified interval [0, 1] before quantization. 

a = clamp ( ̃  a , 0 , 1) , 

 q = Q(a ) . 

.2. Hierarchical feature distribution and mixed-precision QNN 

One of the important advantages that contribute to the remark- 

ble achievements of deep neural networks is that a delicate fea- 

ure representation could be learned automatically by end-to-end 

raining. Based on the network topology structure, the hierarchi- 

al features are organized by the MAC operations and non-linear 

ransformations layer-wise. As the network propagates forward, the 

ariation of each categorical feature distribution is reduced gradu- 

lly while the margins between each other increase. Consequently, 

he feature distributions are mapped from complex manifolds in 

igh-dimension to several clusters in low-dimension and a linear 

lassifier is able to achieve great accuracy by leveraging the final 

emantic features. 

To illustrate the separability of hierarchical feature distribution 

uantitatively, the ratio between the inter-class distance and the 

nner-class distance is selected. Specifically for an image sample x i , 

 

(l) 
i 

is the corresponding feature map after the l th layer of network. 

ue to that the convolution operation focuses on the local pattern 

nd is conducted patch-wise, the average feature patch is extracted 

s the overall local representation, 

 

(l) 
i 

= 

1 

H l × W l 

H l ×W l ∑ 

m =1 

x (l−1) 
i,m 

, 

here W l and H l is the width and height of x (l) 
i 

, respectively, and

 

(l) 
i,m 

is the m th local patch of x (l) 
i 

. Given that d (l) 
i j 

= ‖ z (l) 
i 

− z (l) 
j 

‖ 2 
2 

s the squared distance between the overall local representations 

 

(l) 
i 

and z (l) 
j 

, the feature separability of dataset { (x i , y i ) } N i =1 
could

e measured by 

 

(l) = 

1 

N 

N ∑ 

i =1 

( ∑ 

j: y ( j) = y (i ) d 
(l) 
i j 

/ 
∑ 

j I(y ( j) = y (i ) ) ∑ 

j: y ( j) � = y (i ) d 
(l) 
i j 

/ 
∑ 

j I(y ( j) � = y (i ) ) 

) 

, (1) 

here I ( · ) is the indicator function. 

During the forward-propagation process, the feature transfor- 

ation is conducted by the neurons in each layer. Each individual 

euron works as a simple classifier to extract target feature. The 

nput complexities of the network layers differ from each other, 

hich means that the precision requirements on the neurons are 

lso different. Based on this observation, we argue that the neu- 

ons in the shallower layers are more sensitive to quantization. As 
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Table 1 

Number of weight parameters in typical networks. 

Layer 1 2 3 4 5 6 7 

ResNet-20 432 13,824 51,200 204,800 - - - 

ResNet-18 1728 147,456 524,288 2,097,152 8,388,608 - - 

VGG-7 3456 147,456 294,912 589,824 1,179,648 2,359,296 8,388,608 

AlexNet 41,472 307,200 884,736 663,552 442,368 37,748,736 16,777,216 
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Table 2 

CIFAR-10 Experimental results. 

Model Method k w k a Test Acc. % 

ResNet-20 FP [3] 32 32 91.60 

DoReFa [35] 2 2 88.20 

4 4 90.50 

Ours/heuristic ( t = 1 ) 1.91(4-1-2) 2 88.22 

Ours/manual 1.34 (4-2-1) 2 88.33 

Ours/heuristic ( t = 2 ) 3.82(8-2-4) 4 89.56 

Ours/manual 2.68(8-4-2) 4 90.54 

VGG-7 FP 32 32 92.48 

BNN [33] 1 1 89.85 

HWGQ [41] 1 2 92.51 

DoReFa [35] 1 2 92.33 

2 2 92.83 

Ours/heuristic ( t = 1 ) 1.10(4-4-2-2-1-1/1) 2 93.21 

Ours/ manual 1.06 (8-4-2-1-1-1/1) 2 93.22 

o
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Table 3 

CIFAR-100 Experimental results. 

Model Method k w k a Test Acc. % 

ResNet-20 FP 32 32 66.29 

DoReFa [35] 2 2 60.42 

4 4 63.86 

Ours/heuristic ( t = 1 ) 1.91(4-1-2) 2 61.57 

Ours/manual 1.34(4-2-1) 2 57.82 

Ours/heuristic ( t = 2 ) 3.82(8-2-4) 4 64.28 

Ours/manual 2.68(8-4-2) 4 63.36 

VGG-7 FP 32 32 72.03 

XNOR [18] 1 1 57.74 
he feature distributions overlap mutually, finite neurons are un- 

ble to distinguish the samples and extract meaningful intermedi- 

te representations without suitable precision. Once the advanced 

eatures are obtained explicitly, the following layers become more 

obust to the quantization error. Thus it is feasible to design the 

NN structure more flexibly rather than k −bit homogeneous net- 

orks. The general bitwidth setting for the model progressively de- 

reases from the initial k -bit as the QNN propagates forward. The 

uantitative separability of features of each layer could be mea- 

ured by (1) , which also serves as a hint to determine the used 

itwidth for each layer. 

It is worth noticing that the majority of model parameters are 

oncentrated in the deeper layers as Table 1 shows. The rise of 

itwidth at the bottom layers has little effect on the model size 

n comparison with low-bit network. But the original information 

ould be preserved better. On the other hand, the model size of 

ixed-precision QNN is much smaller than the k −bit homoge- 

eous one due to lower parameter precision. Hence the mixed- 

recision QNN is more compact and has the potential to achieve 

romising performance. 

We could implement the proposed mixed-precision framework 

ith progressively decreasing bitwidth in many neural networks. 

ere we discuss four typical CNNs, including VGG-7 1 , AlexNet, 

esNet-20, and ResNet-18, which will also be validated numer- 

cally, to show the specific settings of bitwidth. The suggested 

itwidth k of each layer is determined by the input separability 

euristically as, 

 = 

⎧ ⎨ 

⎩ 

4 × t, if s ≤ 0 . 8 ;
2 × t, if 0 . 8 < s ≤ 0 . 85 ;
1 × t, if s > 0 . 85 . 

(2) 

ccording to the performance and memory requirements, the sug- 

ested bitwidth setting could be scaled generally by adjusting the 

nteger t . In addition, there exists randomness during separability 

alculation due to dataset sampling. One can also trim the original 

itwidth individually based on the value of s . 

VGG-Net and AlexNet are the representatives of plain CNNs. The 

GG-7 in this paper is designed for CIFAR-10/100 dataset. All the 

eight parameters are quantized except that of the output layer as 

he linear classifier is related to the final results directly and re- 

uires enough precision. 10 0 0 CIFAR-10 samples, 100 per class, are 

elected randomly to calculate the feature separability. According 

he bitwidth rule (2) , the suggested weight bitwidth setting is (4- 

-2-2-1-1/1). Based on this setting, a modified bitwidth combina- 

ion that decreases from 8-bit to 1-bit layer-wise with a factor 1/2 

s shown in Table 2 is also validated in this paper. Although the 

nitial bitwidth is higher than the homogeneous counterpart, the 

verage model bitwidth is reduced to 1.10 and 1.06 respectively. 

lexNet, which contains 5 convolution and 2 latent fully-connected 

ayers, is proposed for the high-resolution image recognition task 

LSVRC-2012 [1] . The input and output layers are maintained full- 

recision as [18,35] for a fair comparison. As the ILSVRC-2012 

ataset contains 10 0 0 categories of samples, it is unaffordable to 
1 VGG-7 architecture: 2 × (128-Conv3 × 3) + MP2 + 2 × (256-Conv3 × 3) + 

P2 + 2 × (512-Conv3 × 3) + MP2 + 1024-FC + Output-FC. 

5 
btain the complete distance matrix { d ij }. Hence 10 categories and 

00 samples per-class are sampled to approach the distance ma- 

rix. The suggested bitwidth setting is shown in Table 4 . The over- 

ll average bitwidth is 1.10. 

ResNet is the pioneer of networks with shortcuts. The ResNet- 

0, which consists of 3 residual stages, is initially proposed for the 

IFAR-10 task [3] . For a fair comparison with related work [18,35] , 

he weight bitwidths of residual stages are determined by s as (4- 

-2) and modified to (4-2-1) as shown in Table 2 . As ResNet-20 

as only 64 filters at the final stage, it is uncertain that the 64-dim 

ooling features obtained by aggressively quantized neurons could 

atisfy the classification requirement, especially for CIFAR-100 task. 

he doubled bitwidth models with more powerful capacity are also 

alidated in this paper. By contrast, ResNet-18, containing 4 resid- 

al stages, is much wider and has 512 filters at the final resid- 

al stage. The suggested bitwidth according to s reduces from 8- 

it to 1-bit, which is shown in Table 4 . The activation bitwidths 

f the mixed-precision networks are set the same with the ho- 

ogeneous counterparts to maintain comparable representation 

apability. 

Beyond classification, the proposed mixed-precision strategy 

ould also be used for other tasks, e.g., object detection, which is 

 much more complicated task. In addition to predict categories of 
DoReFa [35] 1 2 69.64 

2 2 71.44 

Ours/heuristic ( t = 1 ) 1.10(4-4-2-2-1-1/1) 2 70.42 

Ours/manual 1.06(8-4-2-1-1-1/1) 2 71.53 
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Fig. 4. The training curve of ResNet-20 and VGG-7 on CIFAR-10. The training of 

VGG-7 is more stable and enjoys larger learning rate due to network redundancy. 

On the contrary, ResNet-20 is a compact network with shortcuts. The training pro- 

cess is stabilized by lower learning rate. 

Fig. 5. The training curve of ResNet-20 and VGG-7 on CIFAR-100. The higher model 

redundancy makes the VGG-7 also competent for the complicated task. On the con- 

trary, the performance of ResNet-20, which is originally designed for CIFAR-10, de- 

grades significantly on CIFAR-100 due to constrained model capacity. In this case, 

the higher precision could boost the model accuracy notably. 
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Fig. 6. The training curve of AlexNet. Although the model weights are compressed 

to 1.1-bit aggressively, the training process converges effectively and obtain compet- 

itive final results. 

Fig. 7. The training curve of ResNet-18. The generalization fo mixed-precision 

ResNet-18 is better than AlexNet and prefers multi-stage learning rate scheduler. 

Table 4 

ILSVRC-2012 Experimental results. 

Model Method k w k a Top1 Acc% Top5 Acc% 

AlexNet FP 32 32 56.60 80.20 

XNOR [18] 1 1 44.20 69.20 

DoReFa [35] 1 2 47.70 - 

Ours 1.10 (8-4-2-1/1-1) 2 53.18 75.90 

ResNet-18 FP 32 32 69.30 89.20 

XNOR [18] 1 1 51.20 73.20 

Bi-Real [34] 1 1 56.40 79.50 

DoReFa [35] 2 2 62.60 84.40 

PACT [22] 2 2 64.40 85.60 

Ours 1.42 (8-4-2-1) 2 65.03 86.00 

4

 

o

C

c

s

t

m

ultiple objects in an image, the detector also needs to regress the 

oordinates of bounding boxes. This requires greater feature ex- 

racting capability of the network. To investigate the performance 

f mixed-precision QNN on object detection task, a VGG-16 based 

ingle shot detector (SSD) [40] and a ResNet-50 with feature pyra- 

id network based Faster R-CNN [7] are quantized and validated 

n this paper. The weight parameters of VGG-16 backbone are dis- 

retized utilizing the similar bitwidth setting as VGG-7. To improve 

he feature extraction capability at the final stage, the bitwidth of 

xtra layers is set to 4-bit. The output layers remain full-precision. 

he final average bitwidth is 1.42. For the Faster R-CNN, the weight 

itwidth of ResNet-50 backbone is set to (8-4-2-1) for the residual 

tages. The final average bitwidth is 1.52. 

. Experiments 

To validate the performance of QNN with progressively decreas- 

ng bitwidth, we conduct extensive experiments on CIFAR-10/100, 

LSVRC-2012, and Pascal VOC datasets. The training codes of the 

entioned classification and object detection neural networks will 

e available on-line. 2 
2 https://github.com/ariescts/mp-qnn . 

a

c

i

6 
.1. CIFAR-10/100 

There are 10 classes of 50,0 0 0 training images and 10,0 0 0 test

nes in CIFAR-10 dataset. The image size is 32 × 32 pixels. The 

IFAR-100 dataset consists of the same number of images from 100 

ategories. One tenth of training samples are selected as validation 

et. 

We follow the data augmentation in [3] for training. At test 

ime, the original images are sampled directly. We use SGD opti- 

izer with momentum of 0.9 and learning rate starting from 0.1 

nd scaled by 0.1 at epoch 80, 120, 160. L2-regularizer with de- 

ay of 2e-4 is applied to weight parameters. The mini-batch size 

s 128. After 200 epochs of training from scratch, the test accuracy 

https://github.com/ariescts/mp-qnn
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Fig. 8. The sampled detection results of the mixed-precision SSD. The quantized detector is able to locate the distinct and significant objects precisely while neglecting the 

ones which are overlapped or located at the boundary of images. 

7 
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Table 5 

Pascal VOC Experimental results. 

Model Method kw ka map aero bike bird boat bottle bus car cat chair cow 

table dog horse mbike person plant sheep sofa train tv 

SSD-300 FP 32 32 75.10 76.92 82.08 74.83 68.10 47.80 83.23 83.99 88.26 56.65 79.88 

74.56 85.80 84.96 81.48 76.39 43.40 73.88 77.08 87.57 75.14 

Dorefa 2 2 60.66 67.06 73.52 47.77 50.39 22.89 70.48 78.28 72.27 41.93 57.04 

63.61 66.49 75.54 74.63 68.57 25.59 58.22 63.48 75.61 59.83 

Ours 1.22 2 62.21 70.96 76.08 51.64 54.97 25.33 72.37 78.79 74.07 44.30 56.27 

62.43 66.91 78.71 73.82 69.57 27.19 58.90 64.00 77.20 60.69 

Faster R-CNN FP 32 32 77.32 81.00 84.44 76.60 65.18 69.72 83.44 88.00 86.97 61.82 75.82 

73.22 82.71 84.51 83.51 84.38 55.54 80.82 72.91 81.58 74.23 

Dorefa 2 4 74.06 79.23 81.99 70.64 63.99 66.71 79.97 86.65 81.58 59.53 67.32 

70.82 75.64 81.06 82.28 83.60 49.75 74.69 70.40 80.40 74.95 

Ours 1.52 4 74.52 79.77 83.58 72.57 62.34 67.48 81.14 87.14 81.33 58.73 70.40 

69.86 75.94 81.37 80.90 84.02 52.26 75.74 71.34 78.75 75.84 
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ssociated with the best validation performance is reported as the 

nal result. 

After 5 runs of each experiment, the average test accuracies of 

IFAR-10 are recorded in Table 2 . Here, FP and 32-bit denote the 

ull-precision network with floating-point parameters. As the anal- 

sis in Section 3.2 , the mixed-precision networks obtain higher ac- 

uracies than the homogeneous counterparts while the model size 

s smaller. For ResNet-20, the suggested bitwidth settings and the 

odified ones achieve very similar results. Due to the incorpora- 

ion with manual fine-tune, the model size under modified set- 

ing is smaller. And the corresponding mixed-precision network 

ith less than 3-bit for weights 4-bit for activations is able to 

chieve comparable final result as the full-precision network. How- 

ver, at the beginning of training process, the generalization abil- 

ty of mixed-precision QNN fluctuates obviously as Fig. 4 shows. 

his is due to that the quantized values change back and forth due 

o a large learning rate. When the learning rate decays, the train- 

ng process is stabilized. In addition, the mixed-precision VGG- 

ets obtain better result than both the 2-bit and even the full- 

recision one. And the manual setting outperforms the suggested 

ne slightly. We argue that the better information preservation in 

he initial layers due to higher bitwidth boosts the performance 

vidently. Meanwhile, the VGG-7 is a very “wide” network. The re- 

undancy stabilizes the training process as Fig. 4 shows. But once 

ufficient and meaningful information is obtained by the bottom 

ayer, the redundant parameters in the subsequent layers may lead 

o overfitting. Hence, the suitable bitwidth setting contributes to 

he model regularization. 

The results on CIFAR-100 dataset are recorded in Table 3 and 

ig. 5 . The performance is consistent with that of CIFAR-10 gen- 

rally. For ResNet-20, the suggested settings achieve higher accu- 

acy than the manual ones due to greater model capacity. It is no- 

iceable that our modified ResNet-20 result at the fifth line is 3% 

ower than the homogeneous bitwidth network. The reason is that 

esNet-20 is a very “narrow” network that is originally designed 

or CIFAR-10. After the average pooling layer, the dimension of se- 

antic feature, 64, is less than that number of classes. Hence the 

-bit neurons in deep layers would induce significant information 

oss. Once the final or the overall bitwidth increases, the perfor- 

ance bottleneck is broken. While for the wider network, VGG- 

et, it is unnecessary to worry about that. The numerous 1-bit 

eurons in deep layer guarantee meaningful semantic features. In 

omparison with the 2-bit network, the mixed-precision model is 

ble to compress memory space for quantized parameters to nearly 

 half while achieving very competitive accuracy. In addition, the 

anual re-designed quantized network outperforms the suggested 

ne by 1% due to better information preservation at the bottom 

ayer. 
8 
.2. ILSVRC-2012 

ILSVRC-2012 is a 10 0 0-category dataset which consists of 1.2 

illion training images and 50 thousands of validation ones. Com- 

ared to the CIFAR task, ILSVRC is much more challenging due to 

arger and more diverse images. For training, the images are re- 

ized to 256 × 256 and cropped randomly to 224 × 224. For vali- 

ation, the center crops are used as inputs. 

In the training process, an Adam optimizer with initial learn- 

ng rate of 2e-4 and no weight-decay is applied to AlexNet. For 

esNet-18, we take an SGD optimizer with an initial learning rate 

f 0.1 and weight-decay of 1e-4. The learning rate is scaled by 0.1 

t the 60th and 75th of the 90 total epochs and at the 30th, 60th,

0th and 100th of 120 total epochs respectively. After training, the 

op-1 and Top-5 validation accuracies are reported in Table 4 . The 

raining process is illustrated in Fig. 6 and Fig. 7 , which correspond 

o AlexNet and ResNet-18, respectively. It is clear that the mixed- 

recision QNNs have advantages over the ordinary ones in terms 

f both performance and model size. In comparison with the full- 

recision networks, the results are still acceptable. 

.3. Pascal VOC 

Pascal VOC is a benchmark dataset for object detection, which 

onsists of 20 categories of objects in general. To validate the 

erformance of the proposed method on more challenging tasks, 

e select SSD and Faster R-CNN as baseline detectors and train 

ur models on VOC2007 trainval and VOC2012 trainval datasets 

16,551 images) after quantizing the backbone network with 

ixed-precision. Then the resulted model is evaluated on the 

OC2007 test dataset (4,952 images). For SSD, an SGD optimizer 

ith weight-decay of 1e-4 is applied for 80 0 0 iterations of train- 

ng. The learning rate 1e-3 is used for the first 40 0 0 iterations and

hen continue training for 20 0 0 iterations with 1e-4 and 1e-5. For 

aster R-CNN, an SGD optimizer with weight-decay of 1e-4 is ap- 

lied for 10 epochs of training. The learning rate starts from 0.01 

nd is divided by 10 at the 4th, 6th and 8th epoch. 

The comparison results are illustrated in Table 5 . The mixed- 

recision networks still outperform the homogeneous ones. The 

2.21% mAP and detailed AP results of SSD demonstrate that the 

ixed-precision one-stage detector has the fundamental capability 

o detect obvious objects which are significant enough and located 

t the center of images, as demonstrated in Fig. 8 . But compared 

o the full-precision counterpart, the performance of the quantized 

etworks degrade notably with aggressive quantization bitwidth. 

his is due to that the detection task is much more challenging. 

he quantization error makes it difficult to predict the object loca- 

ion directly. 
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By introducing the region proposal network and the feature 

yramid network, the performance of two-stage detector, Faster R- 

NN with quantized backbone, is improved evidently in compar- 

son with SSD. There are marginal gaps between the precision of 

uantized detectors and that of full-precision ones. In addition, the 

ixed-precision detector achieves better performance than the ho- 

ogeneous one while taking less memory space. 

. Conclusions 

In this paper, a novel QNN framework with multiple bitwidths 

s proposed. Based on the observation of layer-wise hierarchical 

eature distributions and network structure, we propose a quan- 

itative separability of feature representation and a progressively 

ecreasing bitwidth setting to address the trade-off issue between 

ggressive compression and excellent performance. 

Extensive experiments on typical CNNs and benchmark datasets 

emonstrate the effectiveness of our method. For image categoriza- 

ion, the re-designed mixed-precision QNN could save at least 25% 

emory space for quantized parameters while achieving preferable 

erformance in comparison with the k −bit homogeneous counter- 

arts. Specifically, the low bitwidth in the deep layers contributes 

o model regularization apart from compression for the redun- 

ant networks like VGG-7. For the compact network on complex 

asks, the model performance is boosted significantly due to better 

reservation of original image information via higher bitwidth in 

he shallower layers. 

Object detection is a much more sophisticated task than cat- 

gorization and has higher requirements on the hierarchical fea- 

ure map. While the quantized one-stage detectors degrade no- 

ably in comparison with the full-precision counterpart, the mixed- 

recision network still outperforms the bitwidth homogeneous one 

n both model size and precision. Meanwhile, the performance of 

wo-stage detector with quantized backbone is improved evidently. 

nd the mixed-precision method is able to reduce the memory 

pace remarkably while maintaining excellent accuracy. 
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