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Efficient model inference is an important and practical issue in the deployment of deep neural networks
on resource constraint platforms. Network quantization addresses this problem effectively by leverag-
ing low-bit representation and arithmetic that could be conducted on dedicated embedded systems. In
the previous works, the parameter bitwidth is set homogeneously and there is a trade-off between su-
perior performance and aggressive compression. Actually, the stacked network layers, which are gener-
ally regarded as hierarchical feature extractors, contribute diversely to the overall performance. For a
well-trained neural network, the feature distributions of different categories are organized gradually as
the network propagates forward. Hence the capability requirement on the subsequent feature extractors
is reduced. It indicates that the neurons in posterior layers could be assigned with lower bitwidth for
quantized neural networks. Based on this observation, a simple yet effective mixed-precision quantized
neural network with progressively decreasing bitwidth is proposed to improve the trade-off between ac-
curacy and compression. Extensive experiments on typical network architectures and benchmark datasets
demonstrate that the proposed method could achieve better or comparable results while reducing the
memory space for quantized parameters by more than 25% in comparison with the homogeneous coun-
terparts. In addition, the results also demonstrate that the higher-precision bottom layers could boost the
1-bit network performance appreciably due to a better preservation of the original image information
while the lower-precision posterior layers contribute to the regularization of k—bit networks.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction Several techniques have been proposed to tackle this issue via

compact neural architecture design [11,12], model pruning [13,14],

The deep convolutional neural networks (CNNs) have achieved
state-of-the-art results on computer vision tasks, such as image [1-
5], object detection [6,7], and semantic segmentation [8-10]. These
achievements depend on the complicated model that overfits the
distribution of numerous training data. However, this also leads
to over-parameterization and dramatic computation cost. A typi-
cal CNN often takes hundreds of MB memory space, i.e.,, 1770MB
for ResNet-101 [3], 250MB for AlexNet [1], 550MB for VGG-19 [2],
and requires billions of FLOPs per image during inference that rely
on powerful GPUs. This challenges the deployment of CNNs on the
edge devices, such as mobile phones and drones. Thus the network
compression and acceleration is an important issue in deep learn-
ing research and application.
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and network quantization [15]. With the network topology un-
changed, the quantization is able to reduce the model size greatly
to only a fraction of the origin by utilizing low-precision represen-
tation of parameters [16]. Furthermore, the internal features could
also be quantized. Then the model inference is accelerated signifi-
cantly by converting the expensive floating-point arithmetic to the
more effective fixed-point operations. Hence both the spatial and
computational complexities are reduced notably by quantization.
Binary neural network (BNN) is a typical aggressive quantiza-
tion method [17]. The model weights and activations are expressed
as {—1, +1} that could be stored by only 1-bit. Benefiting from the
bitwise operations, the dot-product between binary weights and
activations is replaced by XNOR and POPCOUNT arithmetics. Hence
the deployment of BNN is no longer constrained by the GPUs.
However, the naive BNN suffers from non-negligible performance
degradation, especially on large-scale and complicated tasks [15].
Although some proposed techniques have alleviated the informa-
tion loss through improved binarization scheme, network topology,


https://doi.org/10.1016/j.patcog.2020.107647
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107647&domain=pdf
mailto:chutianshu@sjtu.edu.cn
mailto:tomqin@sjtu.edu.cn
mailto:jieyang@sjtu.edu.cn
mailto:xiaolinhuang@sjtu.edu.cn
https://doi.org/10.1016/j.patcog.2020.107647

T. Chu, Q. Luo, J. Yang et al.

and training algorithm, there still exists nontrivial accuracy gap be-
tween BNN and the full-precision network [18-20]. Contemporar-
ily, an effective method to boost the compact model performance
is representing the model variables with fixed-point values, i.e.,
quantized neural network (QNN) [15]. As represented in [21,22],
the QNNs are able to achieve comparable accuracy as the full-
precision networks under the circumstance of 4-bit quantization.
Nevertheless, larger bitwidth means the linear increase of model
size and higher requirement on the hardware capacity. When the
computing resources are extremely limited, it is necessary to make
a trade-off between model accuracy and compression.

In this paper, we work on this trade-off issue by referring to
mixed-precision approach. In fact, the network layers contribute
diversely to the overall performance and each has different sensi-
tivity to quantization. While the network propagating forward, the
dissimilarity between hierarchical features is enhanced progres-
sively. In the shallower layers, the internal features are distributed
on complex manifolds. Accurate neurons are necessary to obtain
the subsequent features. While in deeper layers, a rough convolu-
tional filter is able to distinguish the previous local features as the
deep semantic features are more separable. Hence the parameter
precision could be designed flexibly based on the network struc-
ture and the distribution of hierarchical features. In this paper, a
simple yet effective QNN with progressively decreasing bitwidth is
proposed and the overview structure could be found in Fig. 1. The
original information is preserved well by the high-precision bot-
tom layers while the model size is compressed further due to the
low-precision representation of top layers.

Our main contributions are:

1. Based on the observation on internal feature distributions and
network structure, a mixed-precision QNN with progressively
decreasing bitwidth is proposed.

2. Four typical classification CNNs, including VGG, AlexNet, and
ResNet-18/20, and two object detection frameworks, SSD and
Faster R-CNN, are quantized based on the proposed mixed-
precision method. A heuristic of bitwidth assignment based on
the quantitative separability for feature representation is given.
The layer-wise bitwidth gradually reduces to 1-bit from 4-bit or
8-bit.

3. The re-designed QNNs are validated on several benchmark
datasets, including CIFAR-10/100, ILSVRC-2012, and PASCAL
VOC. The experimental results demonstrate that the mixed-
precision networks could achieve preferable or very similar per-
formance while requiring at least 25% less memory space for
quantized parameters.

The rest of this paper is organized as follows. Section 2 provides
a summary of related works. Based on the analysis on the fea-
ture distributions of different layers, a multi-level quantized struc-
ture with gradually decreasing bitwidth is proposed in Section 3.
In Section 4, we demonstrate the effectiveness of the mixed preci-
sion framework via extensive experiments on several typical CNNs
architectures and benchmark datasets. Section 5 ends this paper
with some conclusions.

2. Related work

Network compression and acceleration is critical to the practi-
cal deployment of CNNs on edge devices. One kind of paradigm fo-
cuses on the network topology structure. Some researches focus on
the design of compact neural architecture. Many lightweight net-
works are proposed, including ResNet [3], DenseNet [4], MobileNet
[23], and ShuffleNet [24]. Besides, there exist some methods that
search for an effective neural architecture via reinforcement learn-
ing [11,12,25]. Some other researches conduct model compression
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from the opposite direction. A tiny network is obtained via prun-
ing and sparsity constraints on the basis of a well-trained complex
network [13,26,27].

Network quantization addresses the compression and accelera-
tion issue from the perspective of data format while preserving the
network architecture. In [28], the results show that half-precision
model is able to acquire promising accuracy. This indicates that the
parameters could be stored by lower bitwidth and the model size
is scaled down. Moreover, the intermediate variables could also
be represented by discrete values. Then the computationally ex-
pensive floating-point arithmetics are replaced by the fixed-point
and bitwise operations which are able to be conducted on the
dedicated hardware. As shown in Fig. 2, both the full-precision
and low-bit variables are preserved in the computation graph
during the training phase. To make backward-propagation feasi-
ble, the gradients flow through the non-differentiable quantizer
straightly, i.e., by straight-through gradient estimator (STE) [15,29].
Some training characteristics and theoretical analysis are demon-
strated in [19,30-32]. After training, the full-precision weights are
removed during deployment.

BNN is an aggressive form of network quantization. The weights
and activations are expressed as {—1,+1} according to the signs.
Thus the memory space required for each variable is reduce to only
1-bit and the model size after binarization is nearly 1/32 of the
origin [33]. In addition, the inference efficiency is improved sub-
stantially by leveraging the XNOR and POPCOUNT operations [15].
However, the extreme compression leads to heavy information loss
during binarization. There exists nontrivial accuracy gap between
BNN and the full-precision counterpart, especially on complicated
tasks. Some techniques are proposed to alleviate the performance
loss via modified binarization scheme [18,20] and network ar-
chitecture [34]. These improvements are limited with extra full-
precision arithmetic introduced.

Another effective way to improve the model capability is as-
signing larger bitwidth to the network variables, i.e., conservative
quantization [15]. A general and flexible quantization method is
proposed in [35] and achieves promising accuracy on ILSVRC-2012
[22] and [36] improve the QNN performance further by adjusting
the quantization step size during back-propagation. In the case of
4-bit quantization, the QNN could achieve comparable results as
the full-precision counterpart. However, the increase of bitwidth
means scale-up of the model size. There is a trade-off between su-
perior performance and aggressive compression.

Among the methods mentioned above, all the model weights
are treated equally and assigned with the same bitwidth. Ac-
tually, the parameters in the stacked neural network contribute
differently to the overall results. It indicates that the parameter
bitwidth should be determined by its individual function. More-
over, some advance chips are released, including Apple A12 Bionic
and Nvidia Turing GPU, that support mixed-precision arithmetic.
Hence some researches tackle the QNN trade-off issue via mixed-
precision method. In [37] and [38], the bitwidth of each parameter
is set according to the quantization residual of a pre-trained net-
work. Wang [39] fine-tune the bitwidth via reinforcement learn-
ing. In this paper, we explore the layer-wise bitwidth from another
perspective and propose a simple but effective mixed-precision
framework. In comparison with the previous work, this proposed
method is more flexible and compatible with various quantization
schemes.

3. Methodology
3.1. Quantization function

As Fig. 2 shows, the discrete data flow through the stacked
neural cells which consist of quantization, multiply-accumulation
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Fig. 1. The bitwidth settings of the k—bit homogeneous QNN (left) and the mixed-precision counterpart (right). The width of neural block will indicate the model size.
The feature distributions after t-SNE transformation are depicted in the middle. In the initial layer, the quantitative separability s is low. Delicate neurons are required to
distinguish the similar feature manifolds. As the network propagates forward, the feature distribution of the same category gathers gradually. In the deep hidden layers, a

neuron with lower-precision parameters is able to extract robust feature.

(MAC), batch normalization, and activation. While the storage and
computation cost is reduced notably, the information loss is in-
evitable due to quantization error during this process. An appro-
priate quantization module which is able to preserve the valuable
information in the continuous variables is crucial for the network
performance.

3.1.1. Binarization

An extreme quantization method is to store the discrete value
by 1-bit, i.e., binarization. Given a variable x € R", the binary value
Xp is determined by the sign. In order to enlarge the value range,
a scaling factor @ is introduced. Then MAC is conducted by
XNOR and POPCOUNT operations. However, the binarization func-
tion B( - ) maps a continuous set R" onto a discrete set {—1, +1}".
The non-differentiability is an obstacle during the backward prop-
agation and challenges the training of QNN. To address this issue,
the STE is proposed to bypass the quantizer [15,29]. The forward
and backward computations of binarization are shown as follows.
I( - ) is the indicator function. If the condition is satisfied, the indi-
cator returns 1. Otherwise, it returns 0.

Il
n

Forward: Xx, =B(x) = sign(x),

Backward: @
0x

~I(|x| <1).

3.1.2. Quantization

The conservative quantization can improve the model capacity
significantly by utilizing a larger bitwidth k > 1. A general linear
function Q( - ) is defined as

L@ 1A,

Forward:

Xq = Q) =

0Q _
FT

where x € [0, 1]" and x4 € [0, 1]" denote the full-precision and
quantized values, and | - | represents the rounding operation. The
STE gradient is utilized either in the backward of Q( - ). With this
function, the model weights and activations could be discretized
after proper preprocessing as follows.

2k

Backward: 1,

3.1.3. Weight quantization
For a continuous weight tensor W € R™ * " it is necessary to
project the unbounded elements into the specified interval [0, 1].
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Fig. 2. The computation graph of a neural cell in QNN. The black arrows depict
the forward data flow and the blue ones show the backward-propagation. Both
the full-precision and quantized values are remained during training. The non-
differentiable quantizer module is bypassed in the computation graph. After train-
ing, full-precision weights are discarded during deployment. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web ver-
sion of this article.)
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Fig. 3. The the histogram of network weight parameters. The first column depicts
the distribution of weights from three different layers in well-trained full-precision
network. The second column demonstrates the quantized weights from the accord-
ing layers in a well-trained QNN. The images from top to bottom in the second
column represent the 8-bit, 4-bit and 2-bit quantization results respectively.

The most straightforward normalization is scaling and shifting af-
ter dividing the largest absolute value. However, the majority of
the continuous weight values distribute around the zero-point as
Fig. 3 shows. The straightforward division would make the nor-
malization dominant by the outliers and lead to additional round-
off quantization error. Hence a non-linear transformation, the hy-
perbolic tangent function, is introduced to alleviate the impact of
long-tail distribution. The saturation effect of tanh( - ) can sup-
press the variation of large values and avoid outliers during train-
ing. It is also worth noticing that the MAC operations are con-
ducted channel-wise,

di=W;-a, W/, aeR"
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The MAC results are related to the weight values in the corre-
sponding channels. Hence it is more suitable to do channel-wise
normalization. The extra scaling factors can be merged into the
batch normalization and no addition computation cost is intro-
duced during deployment. Thus the overall quantization procedure
for weights is as follows,

tanh(W),
M; = mJaX(IWUI),

A 1
Wy =2- Q(2 Vi 2)-1.

3.1.4. Activation quantization

For the activation quantization, it is theoretically feasible to
adopt the similar strategy as weight parameters. But the model
efficiency will drop dramatically due the additional floating-point
operations in preprocessing. Therefore a clamp function is usually
applied as the activation function to confine the features to the
specified interval [0, 1] before quantization.

>
Il

a = clamp(d,0,1),
aq = Q(a).

3.2. Hierarchical feature distribution and mixed-precision QNN

One of the important advantages that contribute to the remark-
able achievements of deep neural networks is that a delicate fea-
ture representation could be learned automatically by end-to-end
training. Based on the network topology structure, the hierarchi-
cal features are organized by the MAC operations and non-linear
transformations layer-wise. As the network propagates forward, the
variation of each categorical feature distribution is reduced gradu-
ally while the margins between each other increase. Consequently,
the feature distributions are mapped from complex manifolds in
high-dimension to several clusters in low-dimension and a linear
classifier is able to achieve great accuracy by leveraging the final
semantic features.

To illustrate the separability of hierarchical feature distribution
quantitatively, the ratio between the inter-class distance and the
inner-class distance is selected. Specifically for an image sample x;,
x? is the corresponding feature map after the Ith layer of network.
Due to that the convolution operation focuses on the local pattern
and is conducted patch-wise, the average feature patch is extracted
as the overall local representation,

H;xW;

1
(O _ x=D
z; —_ E
H,le — im

where W, and H; is the width and height of x(l), respectively, and
xl.(m is the mth local patch of x(” Given that d(” ||z(” (')IIZ
is the squared distance between the overall local representatlons
zi(l) and zjl , the feature separability of dataset {(XuYI)},-=1 could
be measured by

s 1 ﬁ: 2y =y d,-(;)/ZjI(.V(j) =y®)
NS D iy Dy di(;)/Zjl(V(j) #y0)

where I( - ) is the indicator function.

During the forward-propagation process, the feature transfor-
mation is conducted by the neurons in each layer. Each individual
neuron works as a simple classifier to extract target feature. The
input complexities of the network layers differ from each other,
which means that the precision requirements on the neurons are
also different. Based on this observation, we argue that the neu-
rons in the shallower layers are more sensitive to quantization. As

(1)
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Table 1

Number of weight parameters in typical networks.
Layer 1 2 3 4 5 6 7
ResNet-20 432 13,824 51,200 204,800 - - -
ResNet-18 1728 147,456 524,288 2,097,152 8,388,608 - -
VGG-7 3456 147,456 294,912 589,824 1,179,648 2,359,296 8,388,608
AlexNet 41,472 307,200 884,736 663,552 442,368 37,748,736 16,777,216

the feature distributions overlap mutually, finite neurons are un- Table 2

able to distinguish the samples and extract meaningful intermedi-
ate representations without suitable precision. Once the advanced
features are obtained explicitly, the following layers become more
robust to the quantization error. Thus it is feasible to design the
QNN structure more flexibly rather than k—bit homogeneous net-
works. The general bitwidth setting for the model progressively de-
creases from the initial k-bit as the QNN propagates forward. The
quantitative separability of features of each layer could be mea-
sured by (1), which also serves as a hint to determine the used
bitwidth for each layer.

It is worth noticing that the majority of model parameters are
concentrated in the deeper layers as Table 1 shows. The rise of
bitwidth at the bottom layers has little effect on the model size
in comparison with low-bit network. But the original information
would be preserved better. On the other hand, the model size of
mixed-precision QNN is much smaller than the k—bit homoge-
neous one due to lower parameter precision. Hence the mixed-
precision QNN is more compact and has the potential to achieve
promising performance.

We could implement the proposed mixed-precision framework
with progressively decreasing bitwidth in many neural networks.
Here we discuss four typical CNNs, including VGG-7!, AlexNet,
ResNet-20, and ResNet-18, which will also be validated numer-
ically, to show the specific settings of bitwidth. The suggested
bitwidth k of each layer is determined by the input separability
heuristically as,

4xt, ifs<0.8;
k={2xt, if0.8<s<0.85; (2)
1xt, ifs>0.85.

According to the performance and memory requirements, the sug-
gested bitwidth setting could be scaled generally by adjusting the
integer t. In addition, there exists randomness during separability
calculation due to dataset sampling. One can also trim the original
bitwidth individually based on the value of s.

VGG-Net and AlexNet are the representatives of plain CNNs. The
VGG-7 in this paper is designed for CIFAR-10/100 dataset. All the
weight parameters are quantized except that of the output layer as
the linear classifier is related to the final results directly and re-
quires enough precision. 1000 CIFAR-10 samples, 100 per class, are
selected randomly to calculate the feature separability. According
the bitwidth rule (2), the suggested weight bitwidth setting is (4-
4-2-2-1-1/1). Based on this setting, a modified bitwidth combina-
tion that decreases from 8-bit to 1-bit layer-wise with a factor 1/2
as shown in Table 2 is also validated in this paper. Although the
initial bitwidth is higher than the homogeneous counterpart, the
average model bitwidth is reduced to 1.10 and 1.06 respectively.
AlexNet, which contains 5 convolution and 2 latent fully-connected
layers, is proposed for the high-resolution image recognition task
ILSVRC-2012 [1]. The input and output layers are maintained full-
precision as [18,35] for a fair comparison. As the ILSVRC-2012
dataset contains 1000 categories of samples, it is unaffordable to

1 VGG-7 architecture: 2 x (128-Conv3 x 3)+ MP2 + 2 x (256-Conv3 x 3)+
MP2 + 2 x (512-Conv3 x 3) + MP2 + 1024-FC + Output-FC.

CIFAR-10 Experimental results.

Model Method kw ke Test Acc. %
ResNet-20  FP [3] 32 32 91.60
DoReFa [35] 2 2 88.20
4 4 90.50
Ours/heuristic (t = 1) 1.91(4-1-2) 2 8822
Ours/manual 1.34 (4-2-1) 2 8833
Ours/heuristic (t =2) 3.82(8-2-4) 4 89.56
Ours/manual 2.68(8-4-2) 4 90.54
VGG-7 FP 32 32 9248
BNN [33] 1 1 89.85
HWGQ [41] 1 2 9251
DoReFa [35] 1 2 9233
2 2 9283
Ours/heuristic (t = 1) 1.10(4-4-2-2-1-1/1) 2 93.21
Ours/ manual 1.06 (8-4-2-1-1-1/1) 2  93.22

obtain the complete distance matrix {d;}. Hence 10 categories and
100 samples per-class are sampled to approach the distance ma-
trix. The suggested bitwidth setting is shown in Table 4. The over-
all average bitwidth is 1.10.

ResNet is the pioneer of networks with shortcuts. The ResNet-
20, which consists of 3 residual stages, is initially proposed for the
CIFAR-10 task [3]. For a fair comparison with related work [18,35],
the weight bitwidths of residual stages are determined by s as (4-
1-2) and modified to (4-2-1) as shown in Table 2. As ResNet-20
has only 64 filters at the final stage, it is uncertain that the 64-dim
pooling features obtained by aggressively quantized neurons could
satisfy the classification requirement, especially for CIFAR-100 task.
The doubled bitwidth models with more powerful capacity are also
validated in this paper. By contrast, ResNet-18, containing 4 resid-
ual stages, is much wider and has 512 filters at the final resid-
ual stage. The suggested bitwidth according to s reduces from 8-
bit to 1-bit, which is shown in Table 4. The activation bitwidths
of the mixed-precision networks are set the same with the ho-
mogeneous counterparts to maintain comparable representation
capability.

Beyond classification, the proposed mixed-precision strategy
could also be used for other tasks, e.g., object detection, which is
a much more complicated task. In addition to predict categories of

Table 3
CIFAR-100 Experimental results.

Model Method kw ks Test Acc. %
ResNet-20 FP 32 32 66.29
DoReFa [35] 2 2 6042
4 4 6386
Ours/heuristic (t =1) 1.91(4-1-2) 2 6157
Ours/manual 1.34(4-2-1) 2 57.82
Ours/heuristic (t =2) 3.82(8-2-4) 4 64.28
Ours/manual 2.68(8-4-2) 4  63.36
VGG-7 FP 32 32 72.03
XNOR [18] 1 1 5774
DoReFa [35] 1 2 69.64
2 2 7144
Ours/heuristic (t =1) 1.10(4-4-2-2-1-1/1) 2  70.42
Ours/manual 1.06(8-4-2-1-1-1/1) 2 71.53
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Fig. 4. The training curve of ResNet-20 and VGG-7 on CIFAR-10. The training of
VGG-7 is more stable and enjoys larger learning rate due to network redundancy.
On the contrary, ResNet-20 is a compact network with shortcuts. The training pro-
cess is stabilized by lower learning rate.
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1
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Fig. 5. The training curve of ResNet-20 and VGG-7 on CIFAR-100. The higher model
redundancy makes the VGG-7 also competent for the complicated task. On the con-
trary, the performance of ResNet-20, which is originally designed for CIFAR-10, de-
grades significantly on CIFAR-100 due to constrained model capacity. In this case,
the higher precision could boost the model accuracy notably.

multiple objects in an image, the detector also needs to regress the
coordinates of bounding boxes. This requires greater feature ex-
tracting capability of the network. To investigate the performance
of mixed-precision QNN on object detection task, a VGG-16 based
single shot detector (SSD) [40] and a ResNet-50 with feature pyra-
mid network based Faster R-CNN [7] are quantized and validated
in this paper. The weight parameters of VGG-16 backbone are dis-
cretized utilizing the similar bitwidth setting as VGG-7. To improve
the feature extraction capability at the final stage, the bitwidth of
extra layers is set to 4-bit. The output layers remain full-precision.
The final average bitwidth is 1.42. For the Faster R-CNN, the weight
bitwidth of ResNet-50 backbone is set to (8-4-2-1) for the residual
stages. The final average bitwidth is 1.52.

4. Experiments

To validate the performance of QNN with progressively decreas-
ing bitwidth, we conduct extensive experiments on CIFAR-10/100,
ILSVRC-2012, and Pascal VOC datasets. The training codes of the
mentioned classification and object detection neural networks will
be available on-line.?

2 https://github.com/ariescts/mp-qnn.
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Fig. 6. The training curve of AlexNet. Although the model weights are compressed
to 1.1-bit aggressively, the training process converges effectively and obtain compet-
itive final results.
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Fig. 7. The training curve of ResNet-18. The generalization fo mixed-precision
ResNet-18 is better than AlexNet and prefers multi-stage learning rate scheduler.

Table 4
ILSVRC-2012 Experimental results.

Model Method kw kq Top1 Acck% Top5 Acck

AlexNet FP 32 3256.60 80.20
XNOR [18] 1 1 44.20 69.20
DoReFa [35] 1 2 4770 -
Ours 1.10 (8-4-2-1/1-1)2 53.18 75.90

ResNet-18 FP 32 3269.30 89.20
XNOR [18] 1 1 51.20 73.20
Bi-Real [34] 1 1 5640  79.50
DoReFa [35] 2 2 62.60 84.40
PACT [22] 2 2 64.40 85.60
Ours 1.42 (8-4-2-1) 2 65.03 86.00

4.1. CIFAR-10/100

There are 10 classes of 50,000 training images and 10,000 test
ones in CIFAR-10 dataset. The image size is 32 x 32 pixels. The
CIFAR-100 dataset consists of the same number of images from 100
categories. One tenth of training samples are selected as validation
set.

We follow the data augmentation in [3] for training. At test
time, the original images are sampled directly. We use SGD opti-
mizer with momentum of 0.9 and learning rate starting from 0.1
and scaled by 0.1 at epoch 80, 120, 160. L2-regularizer with de-
cay of 2e-4 is applied to weight parameters. The mini-batch size
is 128. After 200 epochs of training from scratch, the test accuracy
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(a) (r) (s)

Fig. 8. The sampled detection results of the mixed-precision SSD. The quantized detector is able to locate the distinct and significant objects precisely while neglecting the
ones which are overlapped or located at the boundary of images.
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Table 5
Pascal VOC Experimental results.
Model Method kw ka map aero bike bird boat bottle bus car cat chair cow
table dog horse mbike person  plant sheep sofa train tv
SSD-300 FP 32 32 75.10 76.92 82.08 74.83 68.10 47.80 83.23 83.99 88.26 56.65 79.88
74.56 85.80 84.96 81.48 76.39 43.40 73.88 77.08 87.57 75.14
Dorefa 2 2 60.66 67.06 73.52 47.77 50.39 22.89 70.48 78.28 72.27 41.93 57.04
63.61 66.49 75.54 74.63 68.57 25.59 58.22 63.48 75.61 59.83
Ours 1.22 2 62.21 70.96 76.08 51.64 54.97 25.33 72.37 78.79 74.07 44.30 56.27
62.43 66.91 78.71 73.82 69.57 27.19 58.90 64.00 77.20 60.69
Faster R-CNN  FP 32 32 77.32 81.00 84.44 76.60 65.18 69.72 83.44 88.00 86.97 61.82 75.82
73.22 82.71 84.51 83.51 84.38 55.54 80.82 72.91 81.58 74.23
Dorefa 2 4 74.06 79.23 81.99 70.64 63.99 66.71 79.97 86.65 81.58 59.53 67.32
70.82 75.64 81.06 82.28 83.60 49.75 74.69 70.40 80.40 74.95
Ours 1.52 4 74.52 79.77 83.58 72.57 62.34 67.48 81.14 87.14 81.33 58.73 70.40
69.86 75.94 81.37 80.90 84.02 52.26 75.74 71.34 78.75 75.84

associated with the best validation performance is reported as the
final result.

After 5 runs of each experiment, the average test accuracies of
CIFAR-10 are recorded in Table 2. Here, FP and 32-bit denote the
full-precision network with floating-point parameters. As the anal-
ysis in Section 3.2, the mixed-precision networks obtain higher ac-
curacies than the homogeneous counterparts while the model size
is smaller. For ResNet-20, the suggested bitwidth settings and the
modified ones achieve very similar results. Due to the incorpora-
tion with manual fine-tune, the model size under modified set-
ting is smaller. And the corresponding mixed-precision network
with less than 3-bit for weights 4-bit for activations is able to
achieve comparable final result as the full-precision network. How-
ever, at the beginning of training process, the generalization abil-
ity of mixed-precision QNN fluctuates obviously as Fig. 4 shows.
This is due to that the quantized values change back and forth due
to a large learning rate. When the learning rate decays, the train-
ing process is stabilized. In addition, the mixed-precision VGG-
Nets obtain better result than both the 2-bit and even the full-
precision one. And the manual setting outperforms the suggested
one slightly. We argue that the better information preservation in
the initial layers due to higher bitwidth boosts the performance
evidently. Meanwhile, the VGG-7 is a very “wide” network. The re-
dundancy stabilizes the training process as Fig. 4 shows. But once
sufficient and meaningful information is obtained by the bottom
layer, the redundant parameters in the subsequent layers may lead
to overfitting. Hence, the suitable bitwidth setting contributes to
the model regularization.

The results on CIFAR-100 dataset are recorded in Table 3 and
Fig. 5. The performance is consistent with that of CIFAR-10 gen-
erally. For ResNet-20, the suggested settings achieve higher accu-
racy than the manual ones due to greater model capacity. It is no-
ticeable that our modified ResNet-20 result at the fifth line is 3%
lower than the homogeneous bitwidth network. The reason is that
ResNet-20 is a very “narrow” network that is originally designed
for CIFAR-10. After the average pooling layer, the dimension of se-
mantic feature, 64, is less than that number of classes. Hence the
1-bit neurons in deep layers would induce significant information
loss. Once the final or the overall bitwidth increases, the perfor-
mance bottleneck is broken. While for the wider network, VGG-
Net, it is unnecessary to worry about that. The numerous 1-bit
neurons in deep layer guarantee meaningful semantic features. In
comparison with the 2-bit network, the mixed-precision model is
able to compress memory space for quantized parameters to nearly
a half while achieving very competitive accuracy. In addition, the
manual re-designed quantized network outperforms the suggested
one by 1% due to better information preservation at the bottom
layer.

4.2. ILSVRC-2012

ILSVRC-2012 is a 1000-category dataset which consists of 1.2
million training images and 50 thousands of validation ones. Com-
pared to the CIFAR task, ILSVRC is much more challenging due to
larger and more diverse images. For training, the images are re-
sized to 256 x 256 and cropped randomly to 224 x 224. For vali-
dation, the center crops are used as inputs.

In the training process, an Adam optimizer with initial learn-
ing rate of 2e-4 and no weight-decay is applied to AlexNet. For
ResNet-18, we take an SGD optimizer with an initial learning rate
of 0.1 and weight-decay of 1e-4. The learning rate is scaled by 0.1
at the 60th and 75th of the 90 total epochs and at the 30th, 60th,
90th and 100th of 120 total epochs respectively. After training, the
Top-1 and Top-5 validation accuracies are reported in Table 4. The
training process is illustrated in Fig. 6 and Fig. 7, which correspond
to AlexNet and ResNet-18, respectively. It is clear that the mixed-
precision QNNs have advantages over the ordinary ones in terms
of both performance and model size. In comparison with the full-
precision networks, the results are still acceptable.

4.3. Pascal VOC

Pascal VOC is a benchmark dataset for object detection, which
consists of 20 categories of objects in general. To validate the
performance of the proposed method on more challenging tasks,
we select SSD and Faster R-CNN as baseline detectors and train
our models on VOC2007 trainval and VOC2012 trainval datasets
(16,551 images) after quantizing the backbone network with
mixed-precision. Then the resulted model is evaluated on the
VOC2007 test dataset (4,952 images). For SSD, an SGD optimizer
with weight-decay of 1e-4 is applied for 8000 iterations of train-
ing. The learning rate 1e-3 is used for the first 4000 iterations and
then continue training for 2000 iterations with 1e-4 and 1e-5. For
Faster R-CNN, an SGD optimizer with weight-decay of 1e-4 is ap-
plied for 10 epochs of training. The learning rate starts from 0.01
and is divided by 10 at the 4th, 6th and 8th epoch.

The comparison results are illustrated in Table 5. The mixed-
precision networks still outperform the homogeneous ones. The
62.21% mAP and detailed AP results of SSD demonstrate that the
mixed-precision one-stage detector has the fundamental capability
to detect obvious objects which are significant enough and located
at the center of images, as demonstrated in Fig. 8. But compared
to the full-precision counterpart, the performance of the quantized
networks degrade notably with aggressive quantization bitwidth.
This is due to that the detection task is much more challenging.
The quantization error makes it difficult to predict the object loca-
tion directly.
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By introducing the region proposal network and the feature
pyramid network, the performance of two-stage detector, Faster R-
CNN with quantized backbone, is improved evidently in compar-
ison with SSD. There are marginal gaps between the precision of
quantized detectors and that of full-precision ones. In addition, the
mixed-precision detector achieves better performance than the ho-
mogeneous one while taking less memory space.

5. Conclusions

In this paper, a novel QNN framework with multiple bitwidths
is proposed. Based on the observation of layer-wise hierarchical
feature distributions and network structure, we propose a quan-
titative separability of feature representation and a progressively
decreasing bitwidth setting to address the trade-off issue between
aggressive compression and excellent performance.

Extensive experiments on typical CNNs and benchmark datasets
demonstrate the effectiveness of our method. For image categoriza-
tion, the re-designed mixed-precision QNN could save at least 25%
memory space for quantized parameters while achieving preferable
performance in comparison with the k—bit homogeneous counter-
parts. Specifically, the low bitwidth in the deep layers contributes
to model regularization apart from compression for the redun-
dant networks like VGG-7. For the compact network on complex
tasks, the model performance is boosted significantly due to better
preservation of original image information via higher bitwidth in
the shallower layers.

Object detection is a much more sophisticated task than cat-
egorization and has higher requirements on the hierarchical fea-
ture map. While the quantized one-stage detectors degrade no-
tably in comparison with the full-precision counterpart, the mixed-
precision network still outperforms the bitwidth homogeneous one
in both model size and precision. Meanwhile, the performance of
two-stage detector with quantized backbone is improved evidently.
And the mixed-precision method is able to reduce the memory
space remarkably while maintaining excellent accuracy.
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